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Abstract

In a matter of mere milliseconds, conversational partners can transform their expectations about

the world in a way that accords with another person’s perspective. At the same time, in similar

situations, the exact opposite also appears to be true. Rather than being at odds, these findings

suggest that there are multiple contextual and processing constraints that may guide when and

how people consider perspective. These constraints are shaped by a host of factors, including the

availability of social and environmental cues, and intrinsic biases and cognitive abilities. To

explain how these might be integrated in a new way forward, we turn to an adaptive account of

interpersonal interaction. This account draws from basic principles of dynamical systems, princi-

ples that we argue are already expressed, both implicitly and explicitly, within a broad landscape

of existing research. We then showcase an initial attempt to develop a computational framework

to instantiate some of these principles. This framework, consisting of what we argue to be impor-

tant mechanistic insights rendered by neural network models, is based on a promising and long-

standing approach that has yet to take hold in the current domain. We argue that by bridging this

gap, new insights into other theoretical accounts, such as the connections between memory and

common ground information, might be revealed.
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1. Introduction

Much of our day-to-day expression of thought and action occurs in rich social interac-

tion. This was likely true in our evolutionary history, as it certainly is in modern society

(Beckner et al., 2009; Clark, 1996). Humans have been interpreting others, and acting

with and among others, in a way that may be constitutive of our species (Tomasello,

2008). When each of us assesses the significance of a communicative event, and seeks to

contribute in kind, we reveal a non-trivial cognitive process, which depends on a number

of factors. These factors range from the perception and use of immediate cues in the

environment, to drawing on previous histories of social interaction to guide language use

and understanding (Galati & Brennan, 2010; Gibbs & Van Orden, 2012). In many

instances, these factors are processed against a reciprocal appreciation of others’ needs or

mental states, where simple attributions about what another knows or believes, or simple

memory associations about the contents of shared knowledge, can quickly shape interac-

tion (Brennan, Galati, & Kuhlen, 2010). This focus on others, “other-centric” or “com-

mon ground” processing, does not necessarily hold—or need to hold—in all cases.

Interlocutors, at least initially, do not always consider or integrate the mental states of

others. Instead, they have been shown to draw from their own knowledge and perspec-

tive, and often rely on non-social cues and heuristics to mitigate potential sources of con-

fusion (i.e., “egocentric” processing; Keysar, Lin, & Barr, 2003).

At first blush, these findings may indicate a lack of consensus, or be perceived as a

contradictory state of understanding in our field. This may be true if the assumption is

that there should be an ego- or other-centric “default” across all interactions. But when

viewed in another light, namely, that egocentric and other-centric behaviors arise from a

highly adaptive cognitive system, it is not surprising to see such variation. To be adap-

tive, sensitivity to context is essential, and given that contexts vary in any number of

ways, from the attributions that can be made, the saliency of associated cues, and the

intentions to be expressed, the resulting behavior should be richly complex. This has led

researchers on both sides of the issue to acknowledge that there are likely multiple strate-

gies for when and how common ground is used (Barr, 2014; Brown-Schmidt & Hanna,

2011). It also places greater importance on the contextual constraints that are present dur-

ing interaction (Schober & Brennan, 2003), as well as the attentional and memory

resources that are needed to process these demands (Horton & Gerrig, 2005).

One of the challenges, however, for any account of perspective taking, is in explaining

how these many constraints and processes are integrated, and why resulting behaviors are

seemingly “inconsistent”—or, put differently, whether so much variation across individu-

als and contexts can be explained more systematically. A promising way forward, as we

discuss here, is to consider how basic principles from dynamical systems theory might

provide a conceptual framework for bridging ideas, and how these principles can be

instantiated as models for systematic exploration.

In general, dynamical systems theory is a theoretical account of how a complex system

changes over time. This process is marked by interactions among component parts, with
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particular emphasis on environmental constraints, the timescales at play, and the multi-

causal underpinnings of stable patterns. There is no need for a “central executive” or

other hardwired control process for explanatory purposes; rather, the locus of control is

distributed across the many interactions present. Given these occur as embedded in a lar-

ger environment, new configurations of the system are always at the ready to meet the

needs of the moment. And with no single deterministic factor dictating outcomes, multi-

ple causes can produce similar patterns.

Extending these principles to an adaptive account of perspective taking, we assume

that during communication, available perspective-taking information is organized across

multiple timescales, both in how it is instantiated and how it is expressed during use.

This information interacts in real time and within diverse social environments, and thus

the relative saliency of one source of information might give way to, or perhaps enhance,

the saliency of other sources of information. In addition to available information, the

dynamics expressed are also influenced by learning and online processing capacities, that

is, cognitive architectural constraints. As these various components vary, so too will the

likelihood of ego- and other-centric behaviors.

In Sections 2 and 3 of this study, we begin by examining how dynamical principles

are already expressed across existing perspective-taking studies, despite many of these

studies originally designed for other purposes. The goal here is to discuss an adaptive,

dynamically inspired account against the backdrop of familiar research, and critically, to

draw preliminary links among a wide-ranging set of research findings. We do so in a nar-

rative style, eschewing formal definitions, with the intention of providing a brief and

accessible overview.1

In Section 4, we turn our attention to the potential of models for understanding per-

spective-taking processes. We argue that progress can be made by building models (a)

that implement dynamical principles computationally; and (b) that do so by simulating

existing experimental paradigms. We focus primarily on the assumption that behavior and

cognition are subject to subtle variables that can radically alter the system’s behavior—
variables that are present in the social environment and produce outcomes that dynami-

cally adapt in time.2

2. Cues and constraints across embedded timescales

How do social contexts influence peoples’ interpretation of what their conversational

partners say or do? Consider the everyday scenario of parting ways with your money.

Whether buying a coffee from your local barista, or haggling over the price of a new car,

unique situational demands shape how perspectives are taken and meaning understood.

The same behavior in one context might be taken as a whimsical display, and in another,

a cause for concern. The barista’s wink is a playful gesture, but coming from the car

dealer, deception. Although these interpretations may be driven by active monitoring of

another’s knowledge and intentions, an adaptive account also opens up the possibility that

such “high-level” demands are supported by, and certainly working in concert with, a
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host of additional factors that are more or less implicit and operate across a range of

timescales.

For example, when conversing with that barista, you may not notice that your bodies

are swaying in similar ways (Richardson, Dale, & Shockley, 2008), or that your voice

rates are beginning to subtly align (Manson, Bryant, Gervais, & Kline, 2013). Meanwhile,

you may engage in complementary turn-taking patterns, where your contributions are

unknowingly timed at regular, oscillatory intervals (Wilson & Wilson, 2005). Even the

phrases being used can become conceptually aligned without conscious attempt, reflecting

a shared understanding that may not be readily understood by a non-participant listening

from across the room (Mills, 2014; Schober & Clark, 1989). What is happening during

this interaction is an integration of perception and action, expressed as an implicit antici-

pation and convergence across behavioral and linguistic channels, that all unfolds over

time (Pickering & Garrod, 2013).

Although the functional consequences of such “low-level” phenomena on social and

cognitive processes are a focus of ongoing research, one promising account is that it

serves language comprehension and common ground processing (Richardson et al.,

2008). Much like skilled dancers or improvisational musicians, language users are highly

attuned to each other’s understanding and perspective. Such accommodation has been

argued as being central to interpersonal communication, and it has recently been

described in terms of synergistic coupling (Fusaroli, Razczaszek-Leonardi, & Tyl�en,
2014). In dynamical systems parlance, synergies occur when the degrees of freedom

between separate behavioral and processing systems become linked through interaction,

resulting in rapid and compensatory adjustments of behavior (Riley, Richardson, Shock-

ley, & Ramenzoni, 2011). This capacity for immediate responsiveness suggests that the

efforts entailed in perspective taking are distributed across social agents, and that when

disparities in understanding do exist, they can be quickly recognized and resolved in a

collaborative manner (Brennan et al., 2010).

Another focus within the perspective-taking literature has been the perceptual and

information-based cues that provide opportunities for social responding (Brennan et al.,

2010). These include the physical characteristics and action capabilities of others, peo-

ple’s location and relationship with other people and objects in space, and even basic

“one-bit” informational units, such as having knowledge of what another is likely to

know or see (Galati & Brennan, 2010). For example, returning to our barista introduced

earlier, upon detecting a foreign accent in his or her voice, you may spontaneously alter

the way you speak to ensure mutual understanding (Costa, Pickering, & Sorace, 2008).

Or perhaps, having been explicitly told that this person is Dutch, you mention how “The

Orange almost had it in 2014,” and provide clarification only when a look of confusion

appears, quickly understanding that he or she is apparently not a sports fan. In another

interaction, your barista might hear you ambiguously ask, as you fumble with your wallet,

for “the cup” despite two identical cups being present, one in front of you and the other

further away. Your barista, however, does not waver, immediately looking to the farther

cup and handing it to you, assuming this is the one you meant given your limitation and

spatial configuration (Hanna & Tanenhaus, 2004). Or you may even spontaneously take
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the visual perspective of the barista to ease his or her understanding. Standing across

from each other at a display case, you ask, “Could you grab me the biscotti on your left,”

despite requiring a mental rotation to do so (Duran, Dale, & Kreuz, 2011).

These findings point to a perspective-taking process that is probabilistically guided and

driven by factors that are forged at longer timescales, integrating histories of social learn-

ing and situational expectations, as well as immediate demands that may arise to divert

attention or tax other cognitive resources. According to our adaptive account, multiple

interacting components come together at any moment to guide possible interpretations

and behavior, and thus no single component will have causal priority.

These observations also open up the possibility that there are many instances of suc-

cessful communication where it is uncertain whether disparities in common ground are

actually acted upon and, instead, egocentric processes primarily hold. As noted previously,

flexible adaptivity arises from a system that is responsive to environmental and social con-

straints, encompassing intrinsic biases of the system, previous histories of experience and

learning, and even genetic predispositions. Because these various forces can activate both

other- and egocentric responses, their competition and resolution during language use is

yet another nested and interactive time course to be explored. Such dynamics suggest a

mechanism of integration whereby people can simultaneously be other- and egocentric,

and where, even in similar contexts, simple cues can have a huge consequence on sponta-

neous perspective-taking behavior (see Duran & Dale, 2014 for a detailed account).

To further explore the role of perceptual and information-based cues on perspective-

taking abilities, we target next a set of existing studies that involve spatial and visual

tracking during interpersonal interaction. Here, the constraints and affordances of our

bodies necessitate that we invariably occupy distinct spatial viewpoints from our conver-

sational partners. As a consequence, we have to consider spatial perspectives that are dis-

tinct from our own. How we resolve this competition requires the integration of multiple

sources of information across time, and it appears to be supported by, but not entirely

beholden to, how information is initially remembered.

3. An example domain: The integrative adaptiveness of spatial perspective taking

Across a variety of non-social tasks, it appears that people consider a number of con-

textual cues when selecting the perspective from which to organize spatial information in

memory (e.g., McNamara, 2003). Although the viewer’s egocentric viewpoint is often

used as the organizing direction of spatial information (Shelton & McNamara, 2001),

other contextual and environmental cues, when available, can influence the selection of

that preferred orientation. These cues include the symmetry of the spatial configuration

(Mou & McNamara, 2002), functional features of the constituent objects (Taylor & Tver-

sky, 1992), and the geometry of the environment in which the configuration is embedded

(Shelton & McNamara, 2001).

In collaborative tasks, social cues, such as a conversational partner’s viewpoint, have

also been shown to influence how spatial information is organized in memory (Galati,
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Michael, Mello, Greenauer, & Avraamides, 2013), how it is described (e.g., Schober,

1993), and how it is interpreted (Duran et al., 2011). Moreover, attributions about the

partner’s ability to contribute to the task, including whether the partner is believed to be

real (vs. simulated, Duran et al., 2011), or familiarity with the environment (H€olscher,
Tenbrink, & Wiener, 2011), also influence whether an egocentric or other-centric perspec-

tive is adopted and what interpretive strategies are used.

Nevertheless, most investigations of spatial perspective have focused on the contribu-

tion of single contextual or social factors. Recent work by Galati and Avraamides (2015)

has shown that perspective selection is instead guided by multiple, converging factors.

These findings are compatible with our adaptive account, which predicts that multiple

cues (egocentric, other centric, and contextual) will be integrated simultaneously. To

demonstrate, Galati and Avraamides (2014) asked participants (“directors”) to study a

spatial configuration of different objects with the goal of describing it later from memory

to a partner (“matcher”). This partner would then later reconstruct the configuration at his

or her own workstation. At study, directors either knew the matcher’s viewpoint (the part-

ner was co-present in the room) or they did not (the partner was absent). Moreover, the

participants’ position was manipulated as to be aligned or not with an intrinsic configura-

tion of the object display (objects were organized around a bilateral axis of symmetry;

see Fig. 1 below). Directors were either aligned alone, matchers aligned alone (assuming

they were present), or neither was aligned (see Fig. 1).

Memory tests preceding the description phase revealed that directors organized spatial

relations in memory according to the convergence of cues (e.g., their own and partner’s

Fig. 1. (A) The setup of study phase with seven-object array organized around a bilateral axis of symmetry,

based on Galati and Avraamides (2014). Director (black circles) was either at 0° or offset at 225°. (B) The
matcher was either present during the study and description phases at 0° or 135° (dark gray circles), or pre-

sent during description phase alone at 0° or 135° (light gray circles). (A) and (B) During the description

phase (and during study when the matcher was present), director was either at 0° and the matcher at 135°,
the matcher at 0° and the director at 225°, or director at 225° and matcher at 135°. Note: during description

phase there were no objects on the table for the director.

766 N. Duran, R. Dale, A. Galati / Topics in Cognitive Science 8 (2016)



position, visibility of partner during study, orientation of configuration). For example,

when directors drew the object configuration based on memory, those who had studied

the configuration while aligned with its intrinsic orientation (0°) always drew them from

that viewpoint—the intrinsic orientation of the array reinforced their egocentric viewpoint

as the organizing direction. For those directors who occupied a misaligned orientation

(225°), the convergence of social and contextual cues now influenced the orientation of

their drawings. When directors at 225° knew in advance that their partner would be

aligned with the intrinsic orientation of the configuration (0°), they were more likely to

organize their drawings along that canonical axis of the configuration. When directors at

225° did not know in advance their partner’s viewpoint, they were more likely to use

their own viewpoint as the preferred orientation of their drawings. And when they knew

in advance that their partner would also be misaligned with the intrinsic orientation of

the configuration (at 135°), they were equally likely to draw arrays from their own view-

point and from the configuration’s intrinsic axis (which was perhaps made more salient

upon considering the oblique viewpoint of the partner).

The convergence of cues available at the description phase also predicted the perspective

from which directors described the spatial configurations to their partner. When the matcher

was aligned with the intrinsic orientation of the configuration, directors used more other-

centric spatial expressions (e.g., to your left) than egocentric expressions (e.g., to my right),

and when directors were the ones aligned with the intrinsic orientation they used more (nu-

merically though not reliably) egocentric than other-centric expressions. Moreover, directors

were able to integrate cues at the description phase, even if the relationship between these

cues was not known at the time of study. For example, as already noted, directors positioned

at 225°, whose partner was not present at the time of study, were more likely to organize

spatial information egocentrically in memory. But when describing the configuration to a

partner who was now present and positioned at 0°, the directors adopted the other’s perspec-

tive while referring to the objects. This is critical because it shows directors do not simply

rely on the preferred direction of their initial encoding in spatial memory but are able to

flexibly adapt to changing circumstances and needs.

These findings provide compelling evidence that multiple sources of information con-

verge and interact over time. Such integration occurs in the initial encoding of spatial

organization and in subsequent communicative planning and interpretation. Rather than

ascribing precedence to single social cues, egocentric biases, or environmental structure,

perspective taking appears to be better captured by a process of multicausality, whereby
multiple factors are brought together in a single moment.

4. Need for integration: Exemplary models

To reiterate, the preceding sections suggest that multiple cognitive processes are func-

tioning during real-time interaction and perspective taking. Low-level and high-level cog-

nitive processes operate together to support coherent and often informationally complex

interaction. The resulting inferences—perhaps subtle and implicit, or other times explicit
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and strategic—operate over an already robust egocentric frame that we employ when nav-

igating the physical and social world. The empirical results we described above suggest

that these processes are integrative and can sometimes produce very different perspectival

outcomes depending on whether information is present or noticed.

But how can we further mitigate the existing debates about the primacy of ego- versus

other-centric processes? How can we develop a more integrative framework? In the past

we have referred to this as a kind of “centipede’s dilemma” problem (Dale, Fusaroli,

Duran, & Richardson, 2013). The cognitive science of interaction includes numerous

specific paradigms and measures that tend to focus on particular situations or behaviors

of interest. The centipede’s dilemma describes the difficulty in achieving progress with a

strategy of this kind. There is not yet an integrative mechanistic account that overcomes

this in a more synthetic sort of analysis or modeling framework. One way forward, which

we take a first step toward in this final section, is to consider the kinds of computational

models that would support systematizing our understanding of interaction and perspective

taking in a mechanistic framework. In sum, the preceding discussion suggests the follow-

ing desiderata for a computational framework:

1 The framework should be capable of integrating multiple simple sources of proba-
bilistic information.

2 It should be capable of non-monotonic transformation, allowing sometimes opposite

outcomes from only slightly changed input.

3 Similarly, it should nonlinearly depend on small but important fluctuations such that

one output or another may be dependent on individual task factors.

4 It should be flexible enough to explore processing and learning in a way that allows

rapid prototyping and exploration of information combination.

In previous work we have argued that complex dynamical systems offer a suitable theo-

retical domain to think about the problems of interaction and perspective taking (Dale

et al., 2013; Duran & Dale, 2014). However, we also noted that complex dynamical sys-

tems are still significantly limited in their ability to flexibly build extensive cognitive mod-

els to which dynamic principles can easily apply (see Dale & Duran, 2013). We argue that

a fruitful way forward would be to consider parallel distributed processing (PDP) models

of the theoretical sort—used traditionally as “theoretical prototype” models or existence

proofs—as satisfying each of the desiderata above (see McClelland, 2009; for some discus-

sion). Indeed, recent discussions on dynamical systems theory and PDP argue that these

frameworks ought to be integrated and are at root little different from each other (Spencer,

Thomas, & McClelland, 2009). It has long been known that neural networks instantiate

dynamical systems of various kinds, and that differences among theorists and modelers

come primarily in the form of computational or theoretical detail, such as ontological

commitments over a network’s input or output space, learning algorithm, and so on.

A natural next challenge is to determine the type of PDP model to develop. There are

numerous possibilities, but we consider two obvious ones and develop a straightforward

prototype for each to demonstrate that the above 1–4 desiderata can be easily accommo-

dated.
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4.1. Normalized recurrence network for real-time processing

The normalized recurrence network was devised by Spivey and Tanenhaus (1998; see

also Spivey & Dale, 2004) as a means of implementing a dynamic processing network

for exploring how a parallel and probabilistic system mitigates potentially divergent

sources of information. It was inspired by classic TRACE connectionist models (McClel-

land & Elman, 1986) and was initially put to the service of investigating ambiguity

resolution in sentence or word processing. It has been used recently by McMurray, Horst,

Toscano, and Samuelson (2009) to study word learning and processing, and by Dale

(2007) to study lexical categorization.

It is easy to devise a perspective-taking normalized recurrence system for demonstra-

tion. For example, consider Fig. 2A that is based on an experimental paradigm developed

by Duran et al. (2011). In this paradigm, listeners saw identical objects on a table and

received verbal instructions from a conversational partner to grab the “object on the left”

or “object on the right,” and to then hand it over. Sometimes speakers were oriented in

such a way that they were next to the listeners (at 0°), and the perspectives of both con-

versational partners were aligned. In a more ambiguous situation, speakers might be ori-

ented opposite the listeners (180°), and the instruction “grab the object on the left” can

now be interpreted as meaning the speakers’ left. If so, listeners would select the object

on their right, an other-centric response. It was found that particular selections were

guided by very simple social beliefs held by listeners. For example, if listeners believed

speakers could not see them, they were more likely to act other centrically (presumably

because speakers were issuing instructions from the only perspective available to them—
their own).

Now, imagine a simple normalized recurrence system that similarly integrates input

from social and task parameters to determine the output of an ego- or other-centric “left”

or “right” response. In such a model, as depicted in Fig. 2B, an “integration layer” would

correspond to object selection possibilities (shown in double-lined circles) and would

receive numerous inputs, including information about a task partner’s orientation (shaded

circles), simple belief information about a social partner (square nodes), and the “verbal”

instructions from a partner (single-lined circles). We can also build in egocentric biases

that might be reinforced when conversational partners’ orientations are aligned at 0°, or
that are merely present a priori. To do so, we increase the initial activations of the links

originating from the egocentric response possibilities in the integration layer.

In processing these sources of information to provide a “decision,” the object integra-

tion layer receives combined activation input from the various input layers, such that for

each node i of each layer,

objecti ¼ instructioni þ orientationi þ beliefi

and once integrated, the input layers themselves are updated by receiving input from the

object integration layer,
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instructi ¼ instructioni þ objecti � instructioni

orientationi ¼ orientationi þ objecti � orientationi

beliefi ¼ beliefi þ objecti � beliefi

This integrative feedback continues iteratively in a dynamic sense, where current

inputs are the outputs of previous time steps, until the system stabilizes or achieves some

activation threshold with one of the “left” or “right” object nodes (see Fig. 3).3 In this

Fig. 2. Normalized recurrence network used to simulate perspective-taking behavior. (A) The architecture

reflects the task arrangement in Duran et al. (2011, 2014): Two instructions (left, right), two objects (egocentri-

cally on the left, right), and social information that can be activated (position of “speaker” (“S”) at 0° or 180°,
and whether speaker can see or not). Note: the network “listener” (“Lis”) is always positioned at 0°. (B) These
sources of information feed into an integration layer of the neural network architecture. This layer includes the

possible selection of the right object (double-lined Ro, where superscript “o” corresponds to an other-centric

response, and “e” corresponds to an egocentric response) when hearing the left instruction. Note: the thickness

of the lines near 0° and egocentric left/right nodes are slightly increased to reflect egocentric biases.
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way, the network’s decision is shaped by a dynamically updating activation space. Given

space restrictions, we cannot present detailed specifications, but code and further descrip-

tions are provided at www.github.com/nickduran.

With this model, we can begin to manipulate the input to demonstrate how the contri-

butions of multiple cues interact over time, producing the same perspective-taking

dynamics observed in previous experimental findings. Fig. 3A–C shows the results of

some of these critical manipulations. Importantly, input layer nodes are “turned on” by

giving them greater starting activation values (either 0.25 or 0.5, relative to a value of 0),

akin to a flexible one-bit either/or memory instantiation (Galati & Brennan, 2010). For

example, in Fig. 3B, the nodes for 180° orientation (0.5), left instructions (0.5), and “can

see” (0.5) are turned on, with the model rapidly settling on the egocentric “left” object

node. However, when the “cannot see” node is now turned on, a social belief previously

found to facilitate other-centric responding, the dynamics of the model converge on a

similar decision, selecting the other-centric “right” object (Fig. 3C). Interestingly, this

decision is more drawn out as it approaches threshold, approximating greater processing

costs and similar dynamics in human response movements (Duran & Dale, 2014).

4.2. Multilayer perceptron that performs spatial transformation and learning

A downside of the model described in Section 4.1 is that its connections are hand

coded. It abstracts over the complexity of learning and memory. To overcome some of

these limitations, we seek insight from perhaps the best-known PDP framework: the mul-

tilayer perceptron that learns by error backpropagation at each time step. It has been

applied to a number of domains (for a review and introduction, see McLeod, Plunkett, &

Fig. 3. Iterative activation of integration layer nodes corresponding to objects on the left (solid line) or on

the right (dashed lines), where objects are “selected” based on highest activation stabilization. (A) When we

activate input layer nodes corresponding to 0° orientation, left instructions, but do not activate social informa-

tion, the network rapidly selects the egocentric left object (solid line). (B) If we instead activate the 180° ori-
entation along with the left instructions, but also activate the “can see” social information, there is more

competition among objects, but the egocentric left response (the left object relative to the “participant” net-

work) is selected. (C) If we now activate the “cannot see” network, the response is precisely the opposite;

there is a relatively quick response to the opposite object (right), although the dynamics are slightly more

drawn out than the egocentric response seen in panel (A).
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Rolls, 1998) and has famously been extended in various ways to include sequential pro-

cesses (Elman, 1990). This architecture provides a highly flexible domain to combine

information sources and develop task parameters.4

Given this flexibility, we implemented a more extensive array of task-based nodes that

correspond to the full repertoire of social and environmental cues as used in Duran et al.

(2011) (Fig. 4A). Doing so allows objects to occur at four unique locations, and it allows

speakers’ instructions to describe objects as being “above” or “below.” Moreover, the

speaker could also be positioned at 90° and additional social belief information is avail-

able. As shown in Fig. 4B, these cues served as additional weighted input nodes to a hid-

den layer. As is standard in these models, input is nonlinearly transformed and used to

predict an outcome (e.g., egocentric/other-centric objects 1–4), and any error in this

Fig. 4. The multilayer perceptron. (A) A more flexible architecture allows a wider array of task-based input

nodes. In addition to those described in Section 4.1, we add a more complex configuration of object posi-

tions, which in turn allows for more complex instructions. We also add additional orientations in which the

“speaker” partner (“S”) can be positioned (90° to the left relative to the “listener” (“Lis”), marked with sub-

script “a,” or to the right, marked with subscript “b”), and an additional social belief (a belief that the partner

is a real or simulated agent, where believing the partner to be simulated has been shown to engender greater

other-centric responding). (B) These sources of information feed into a hidden layer to predict possible out-

comes (objects 1–4) where, during a training phase, errors are corrected through backpropagation and weights

across links and nodes dynamically updated.
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prediction is used to update connection weights via backpropogation on a trial-by-trial

basis. More information can be found in the online supplementary material.

Importantly, we have to design a set of learning trials to set the network’s weights for

testing. For example, we can initially bias the weight space to favor egocentric responses

by having the model expect egocentric objects when presented with combinations of

instruction types. Such learning (reduction in error toward 0) can be seen in Fig. 5A for

about the first 2,500 trials. After instilling this ego bias, we then expose the network to

the alternative non-egocentric response possibility. At this point, the network has to reor-

ganize its weight space to accommodate as the error spikes in the face of these new

ambiguous trials. Following this training (about 10,000 trials), the network must then

learn how to socially transform its weight space by “changing perspective” in response to

social belief input. That is, when an other-centric belief such as “partner is not a real per-

son”5 (“~Re” node in Fig. 4B) is given, with the left instruction and 90°a orientation

nodes, the model should select “object 1” opposed to “object 3.” Again, despite a brief

but substantial spike in error, the model appears to efficiently learn over the remaining

trials.

To test how the network might respond to single trials, as we did with the normalized

recurrence network above, we use an approach akin to the cascade model initiated by

McClelland (1979). We begin by activating a set of conditions for one trial, for example,

a left instruction with 0° orientation (as shown in Fig. 5B), and pass activation one time

through the network. We then use the network’s output activations to update the input

activations. This effectively allows the network to factor in immediate prior expectations

with new activations, doing so across a weight space that has previously been shaped by

learning, establishing a kind of long-term memory. An object node is eventually selected

when it hits threshold stabilization.6

Fig. 5B shows an egocentric response convergence across 10 iterative time steps.

Importantly, the network is also capable of flipping its response when we activate social

Fig. 5. Learning and response behavior for the multilayer perceptron network. (A) Error reduction in network

being trained to appropriately respond to input combinations that lead to egocentric and other-centric expecta-

tions. (B) Referent corresponding to an egocentric response (dashed line) is converged upon when no social

information is given and initial ego activation is set at 90%. (C) The referent corresponding to an other-cen-

tric response (solid line) is converged upon with initial ego activation still set at 90%, but social information

now provided that overcomes egocentric bias.
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and orientation information (e.g., partner is located at 90° and “cannot see”). The network

does this even when, in both cases, initial egocentric activation is set at 90%—we give

the network a strongly biased 0-degree “ego-centric” node activation, and it is still able

to radically alter the output object that reaches threshold. Moreover, these other-centric

responses are probabilistic as a result of the long-term training. Some networks still fall

into an egocentric strategy, other networks become even more other centric. That is, in

keeping with the language of the desiderata outlined above, nonlinear fluctuations across

multiple sources of probabilistic information allow for non-monotonic transformation of

perspective-taking outcomes.

The dynamic output from both models may permit data fitting of the kind seen in the

normalized recurrence model in other studies, such as Spivey and Tanenhaus (1998).

Indeed, such fixation profiles, over time, are what often distinguish ego- vs. other-centric

processes in observed data (e.g., Brown-Schmidt, 2009; Wu, Barr, Gann, & Keysar,

2013; e.g., Duran et al., 2011, with computer-mouse tracking). Rigorous statistical analy-

sis of the data often separates interpretations. The approach here would be different.

Space restricts our presentation only to initial demonstrations, but we hope that flexible

neural modeling would permit generative models, to see which constraint conditions

bring about different behaviors in time. This framework would indeed permit such explo-

rations, as we further elaborate below.

5. Discussion

In the preceding sections we reviewed research suggesting that perspective taking and

interaction are highly adaptive, involving the integration of many diverse cues. We gave

two examples of neural network models that have important properties needed to develop

a mechanistic integration of perspective taking. Our models suggest that adaptive out-

comes are possible through the nonlinear and simultaneous competition of multiple con-

straints over time. These outcomes are possible even with basic assumptions about the

nature of common ground information. Here, information was available as simple visual

cues or beliefs directly available from context. This framework may serve as a computa-

tional instantiation of the “one-bit” account of Brennan et al. (2010). Within the multi-

layer perceptron model, this information was associated with certain perspective-taking

orientations established through repeated exposure and error correction, akin to typical

development and learning. These associations were “remembered,” in a sense, within the

distributed weight space of the hidden layer, where processing constraints were also

imposed by the size of the hidden layer.

Although simple, these assumptions have plausible experimental grounding and could

provide modeling support for the notion that a great deal of interpersonal interaction

might involve minimal burdens on cognitive processing. A major advantage of these

models is that such claims can be tested by manipulating the nature of the input and

parameters (task related, cognitive, or social), thus exploring these simple generalizations

in a range of interactional domains. By modifying the architecture, input and output
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representation space, the training regime, and so on, one could explore the role of social

memories (Horton & Gerrig, 2005), executive-control processes (Brown-Schmidt, 2009),

and more.

This line of theoretical development can also be pursued in a complementary fashion

with other modeling approaches. For instance, recent accounts of how perspective-taking

information is used have taken a “constraint-based” view that prioritizes the probabilistic

weightings of available social cues (Brown-Schmidt & Hanna, 2011). The confluence of

these weightings can guide hypotheses for interpretation, a view that is highly compatible

with Bayesian models (Barr, 2014). What these models emphasize is thus the strength of

contextual “priors” and rational combinations of which to produce “posterior” updating of

perspective choice. In our account, these priors can also be implemented as initial system

constraints—as was done in these preliminary modeling demonstrations. Some variant of

the multilayer perceptron (MLP) model, for example, could be seen as implementing

dynamic updating of posteriors in the face of new input (cf. Richard & Lippmann, 1991).

The major difference in our theoretical account, however, is the explicit focus on the

dynamic process in which these choices are resolved. Understanding these interactions, in

time, may reveal the mechanisms underlying reference-frame resolution, and neural net-

work models are well suited and easily adapted for these goals. We would argue that mod-

els that emphasize time as a key unit of analysis are crucial for resolving the

inconsistencies seen in the empirical data, too—the variability in ego- versus other-centric

responses in a wide variety of tasks requires dynamic models to help us understand what

constraints bring about one dynamic profile or another. As noted above in the simulations,

eye movement data, for example, show divergent fixation profiles when ego- versus other-

centric processes hold sway. Though space restricts exploring this here, dynamic models of

this kind may permit a direct map onto such dynamic data (see, e.g., Duran & Dale, 2014).

5.1. A further challenge: Integrating memory and common ground

The interconnections between memory and common ground information are fast

becoming a central issue in understanding communicative perspective taking. Dynamical

systems have sometimes avoided, or completely dismissed, the memory capacities that

underlie perspective-taking abilities. In some cases this is for good reason, as perceptuo-

motor constraints in the environment can account for a great deal of complex behavior

without resorting to internal representations (see Barrett, 2011, for an excellent introduc-

tion). But in light of the previous discussion, it seems worthy to consider the possibility

that for some behaviors in some contexts, various memory representations regulate com-

municative behavior.

So what role does memory and common ground play in our account? We argue that,

to make progress in this domain, each should be viewed as embedded in a highly adap-

tive cognitive/behavioral/environmental system. Their contribution to perspective taking

can then be understood in terms of interactions within a larger ecology of high- and low-

level constraints that are organized across multiple timescales. It is true that this account,

at least in its current form, does not directly inform the representational nature of
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common ground information or how it is retrieved from memory. But it does suggest that

answers will be shaped by the nature of the interactional dynamics themselves, and fur-

ther appreciation of the unique communicative contexts in which they occur. Insofar as

the purpose of memory “representations,” however conceived, is to act on a sometimes

predictable, sometimes unstable, social world, their retrieval and deployment must in turn

be flexible and probabilistic.

In conclusion, we hope the reader is intrigued by the promise of building more integra-

tive dynamic models for these important and complex social processes. This line of theo-

retical development, we feel, might help systematize our understanding of adaptive

perspective taking. Whether more egocentric in some contexts, or other centric in others,

integrative models may help us understand how an adaptive and context-sensitive process

can bring about both.

Notes

1. See Richardson, Dale, and Marsh (2014) for a more formal treatment of dynamical

systems within the social sciences.

2. It should be noted that cognitive scientists who adopt a dynamical perspective gen-

erally seek to understand systems as they are structured in time, although this per-

spective has a number of flavors. For example, some forgo representations, and

wish only to see formal specification of observed behavior through mathematical

models (see Chemero, 2008 for a summary), whereas others may be more inclined

to adopt computational models that invoke some form of internal representation

(e.g., Spivey & Dale, 2006). In all these accounts, it is generally assumed that

behavior and cognition are subject to subtle variables that can radically alter the

system’s behavior—in other words, systems dynamically adapt in time. This is the

general theoretical feature that guides the current exploration.

3. Note that the entire vector of activations, for each layer, is normalized to 0–1
before the next pass of activations.

4. Some have complained that this flexibility is a weakness as a theoretical framework

(Marcus, 2001), a critique now leveled at Bayes, too (Marcus & Davis, 2013).

However, any productive cognitive modeling framework has the same extreme flex-

ibility (including classical ones). The critique is an empty one when one regards

models as ever-nascent conceptual/quantitative explorations of some task/process

rather than a rigid mathematical theory which, even in the “purest” case in physics,

is subject to vibrant debate about excessive flexibility and philosophical implica-

tions (Smolin, 2006).

5. Greater other centricity is consistent with the principle of least collaborative effort.

Because the simulated partner is unable to take perspective, the listener is instead

willing to put in greater effort to do so (for greater detail, see Duran et al., 2011).

6. To avoid settling in permanently ambiguous output values, we square the output

activations outputi = outputi
2 then renormalize outputi = outputi/∑j outputj.
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