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Abstract The cognitive architecture routinely relies on
expectancy mechanisms to process the plausibility of stim-
uli and establish their sequential congruency. In two com-
puter mouse-tracking experiments, we use a cross-modal
verification task to uncover the interaction between plausi-
bility and congruency by examining their temporal signa-
tures of activation competition as expressed in a computer-
mouse movement decision response. In this task, partici-
pants verified the content congruency of sentence and scene
pairs that varied in plausibility. The order of presentation
(sentence-scene, scene-sentence) was varied between par-
ticipants to uncover any differential processing. Our results
show that implausible but congruent stimuli triggered less
accurate and slower responses than implausible and incon-
gruent stimuli, and were associated with more complex
angular mouse trajectories independent of the order of
presentation. This study provides novel evidence of a dis-
association between the temporal signatures of plausibility
and congruency detection on decision responses.
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Introduction

When experiencing events, our cognitive system routinely
makes use of expectations to anticipate upcoming informa-
tion and to guide action (e.g., Rao & Ballard, 1999; Friston,
2010; Wacongne et al., 2012). The violation of expectations,
and their relation to stimulus plausibility, has been explored
in areas as diverse as language comprehension to visual
scene perception (e.g., Kutas & Hillyard, 1980; Van Berkum
et al., 1999; Henderson et al., 1999; Ganis & Kutas, 2003;
Hagoort et al., 2004; Mudrik et al., 2010; Võ &Wolfe, 2013;
Coco et al., 2014). An open challenge remains to understand
how the cognitive system utilizes expectancy mechanisms
to synchronously hold information across multiple points
in time and integrate it to produce action responses (Bar,
2007). The growing attention towards this challenge can
be traced to current proposals in the cognitive sciences
that aim to bridge low-level perceptual processes, high-
level expectancy mechanisms, and motor control within the
same predictive processing framework (e.g., Clark, 2013;
Pickering & Clark, 2014). Lupyan and Clark (2015), for
example, suggest that perception is an inferential process,
whereby prior beliefs are combined with incoming sensory
data to optimize in-the-moment processing and to improve
future predictions. In the current study, we draw from this
framework to explore how different types of expectations
interactively mediate comprehension, and how these com-
prehension processes can be captured over time through a
fine-grained analysis of response behavior.

Previous research on expectancy mechanisms has largely
employed electrophysiology (EEG) measures. A common
finding in this research is that a mismatch between pre-
dictions and incoming linguistic or non-linguistic stim-
uli trigger negative shifts in event-related brain poten-
tials (e.g., Ganis & Kutas, 2003; Kutas & Hillyard, 1980;
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DeLong et al, 2005; Mudrik et al., 2010). Such shifts
are typically interpreted as evidence that a prediction had
occurred and that prior knowledge has been updated. More-
over, the magnitude of these negative shifts is modulated
by the context in which unexpected stimuli is placed (e.g.,
a sentential context, Marslen-Wilson & Tyler, 1980; Kutas,
1993), as well as by additional information preceding it,
such as a narrative of visual scenes (Sitnikova et al., 2008;
Cohn et al., 2012).

Although EEG studies have provided invaluable insights
into contextual effects and processing costs at the moment
unexpected stimuli is encountered, there may also be addi-
tional costs that persist after the initial encounter. This is
particularly true when expectations must be maintained in
memory to perform an explicit decision response, such as in
verification tasks where participants are asked to assess the
congruency of a pair of sequentially presented stimuli (i.e.,
whether a sentence and a picture convey the same message
or not; e.g., Clark & Chase, 1972; Carpenter & Just, 1975).
We hypothesize, per a predictive processing framework,
that when incongruent stimuli are encountered, activation
elicited from the initial stimulus will compete with bottom-
up sensory activation from the second stimulus, taking time
to resolve as the error signal is adjusted. Moreover, we

expect multiple sources of expectancy to contribute to the
prediction activation strength, i.e., not only the congruence
between consecutive stimuli, but also their plausibility (i.e.,
whether the stimuli being conveyed depicts something plau-
sible or implausible). The interaction between these sources
has been only marginally investigated and there have been
no studies, as far as we are aware, that have examined how
the costs driven by congruency and plausibility activate,
compete, and are resolved throughout an extended decision
response.

The examination of this interaction requires an exten-
sion of typical verification tasks along with novel ways to
track competition costs. Beginning with the task, partic-
ipants in our study were presented with two consecutive
mixed modality stimuli (a sentence and a scene) and asked
to verify the congruency of the content. As an extension, the
content of the stimuli were manipulated to be consistent or
inconsistent with prior knowledge expectations (i.e., stim-
uli convey plausible or implausible content). For example,
participants might be asked to read a sentence that is plau-
sible or not (e.g., they boy is eating a hamburger vs. eating
a brick), and then are shown a visual scene that does or
does not match the earlier content (this order is also reversed
for another set of participants in a “scene-first” version; see

Fig. 1 Experimental design and example of experimental stimuli
for Order of presentation: Sentence-First (top row) and Scene-First
(bottom row), crossing Plausibility and Congruency. For each Order,
a sentence or a scene is presented either as a first or as a sec-
ond stimulus. In Sentence-First, a sentence is read self-paced, then a
scene is presented for 1 second. In Scene-First, a scene is presented
for 1 second, then a sentence is read. After being exposed to the

pair of stimuli, participants are asked to use the computer mouse to
evaluate whether the messages conveyed by the two stimuli were con-
gruent or not, see also Fig. 2 for an example of a trial run. The
sentence in Portuguese is o rapaz está a comer ... and the 4 versions
created as: (um hamburger, Congruent/ Plausible), (um tijolo, Con-
gruent/Implausible), (um peixe, Incongruent/Plausible), (uma alça,
Incongruent/Implausible)
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Fig. 1 for the example design). In this way, expectations
generated when processing the first stimulus are allowed
to interact with a subsequent second stimulus in terms of
both plausibility and mutual congruence (and potentially
modulated by modality).

The above experimental setup provides a fully-crossed
design of congruency and plausibility expectations, which
we employ to explore how systematic mismatches of expec-
tations result in different competition costs. We imple-
mented this design under an action dynamics approach
that involved tracking participants’ computer-mouse cursor
movements during verification - specifically as partici-
pants navigated from the bottom of their screens to the
top of their screens where “yes” and “no” options were
located in opposite corners. In previous work, the resulting
movement trajectories have been shown to reveal moment-
by-moment competition between the response options as
decisions unfold, typically in trajectories that deviate toward
a competitor response en route to a target selection (Spivey
& Dale, 2004; Magnuson, 2005; Spivey et al., 2005; Farmer
et al., 2007; Dale et al., 2007; Duran et al., 2010; Papesh &
Goldinger, 2012).

In the current paradigm, for example, we may observe
response conflicts of this type when the first stimulus con-
veys plausible information, activating a “yes” response (i.e.,
initial movement toward this option on the screen), that
must be corrected when a subsequent mismatching stimulus
appears (to a “no” response). This result would corroborate
previous mouse-tracking research that has found response
conflicts to be associated with congruency mismatch in ver-
ification tasks (e.g., van Vugt & Cavanagh, 2012). Critically,
however, our study makes it possible to examine whether
conflicts due to violation of congruency expectations are
modulated by the plausibility of the stimuli. In particular,
we expect that when an initial stimulus conveys informa-
tion violating prior knowledge, i.e., it is implausible, a ’no’
response is activated. This response must be corrected to a
’yes’ response if the subsequent stimulus is congruent with
the initial stimulus, despite the subsequent stimulus also
conveying the same implausible content. This is the case,
for example, when the participant reads a sentence such as
the boy is eating a brick, and then he/she is presented with a
scene congruently depicting a boy eating a brick. In partic-
ular, this response conflict should emerge very early in the
initial angle of the movement towards the incorrect response
(to a ’no’ response), and be observed throughout the trajec-
tory as a consistent deviation towards the incorrect choice,
or as a higher number of directional changes. Such evi-
dence would help refine the predictive processing account
by showing that the matching of congruency expectations
and bottom- up sensory information is alone not sufficient
for facilitating cognitive processing, but much depends on
the plausibility of the information being integrated.

Method

Previous literature has adopted the notion of congruency
to indicate both stimulus implausibility (e.g., Mudrik et
al., 2010) and mismatch between consecutive stimuli (e.g.,
West & Holcomb, 2002; Sitnikova et al., 2008). In our 2×2
experimental design, Congruency indicates whether stim-
uli matched in content (Congruent, Incongruent) between
stimuli, and Plausibility indicates whether content was
expected or unexpected within stimuli (Plausible, Implau-
sible). Moreover, the cross-modal Order of presentation
(Sentence First, Scene First) was manipulated as two sep-
arate experiments (between-participants design). In Fig. 1,
we provide a schematic description of the experimental con-
ditions for both studies, and provide a full set of crossed
pairs of stimuli.

Participants

Sixty-four students at the University of Lisbon, all native
speakers of Portuguese, participated in the study for course
credits. The experiment was granted by the Ethics Commit-
tee of the Department of Psychology, in accordance with the
University’s Ethics Code of Practice.

Materials

We used 125 photorealistic scenes, originally published in
Mudrik et al. (2010), and added another 100 scenes based
on open-access material from the Internet (e.g., Flickr).
Each of this 225 unique scenes (size = 550×550 px) were
presented in the two conditions of Plausibility and Implau-
sibility, which means 450 scenes in total between these
two conditions (e.g., the picture of the boy either eating a
brick, or a hamburger). In order to generate the Congruency
conditions, we constructed 2 types of sentence for each con-
dition, for a total of 900 sentences, which is the total number
of items1. As exemplified in Fig. 1, top row: (a) Congru-
ent/Plausible is the scene of the boy eating an hamburger
paired with the sentence the boy is eating a hamburger, Con-
gruent/Implausible is the scene of the boy eating a brick
paired with the sentence the boy is eating a brick, Incon-
gruent/Plausible is the scene of a boy eating a hamburger
and the sentence saying the boy is eating a fish, Incongru-
ent/Implausible is the scene of the boy eating a brick, and
the sentence saying the boy is eating an handle.

The sentences were written in Portuguese and checked
for grammaticality by two independent native-speaking

1Note that the incongruent condition could also have been obtained by
fixing the plausibility of the sentence (plausible or implausible) and
manipulating the associated scenes (four versions). However, as scene
material is harder to construct, we opted against this method.
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annotators. The target word (e.g., hamburger vs. brick) was
always positioned at the end of the sentence. The annotators
also ensured that the target object depicted in the scene was
recognized as the target word used in the sentence.

We divided these 900 stimuli into 4 Latin-Squared lists,
225 items each, such that no items were repeated within
the list. From each list, we selected 100 items to present
to an individual participant, and made sure that across par-
ticipants all 900 stimuli, distributed in the 4 lists, were
presented an equal number of times.

In order to assess how plausibility, congruency, and other
possible task co-variates (such as the grammaticality of the
sentence) were perceived during the experiment across tri-
als, we asked the participant at the end of each trial to rate
on a scale from 1 to 6 (i.e., from very strongly disagree
to very strongly agree) the: 1) plausibility of the scene, 2)
visual saliency of the target object, 3) congruency between
the scene and the sentence, 4) grammaticality of the sen-
tence. For these ratings, the previously shown stimuli were
displayed and there was no time limit to answer.

In the Supplementary Material, we present analyses of
the ratings, in terms of both accuracy and response time,
that confirm the validity of our experimental manipulations
(’Question answer confidence scores’).

Apparatus and procedure

The experiment was designed using Adobe Flash 13.0 (sam-
pling at 60 Hz) and run in the computer laboratory of the
Department of Psychology at the University of Lisbon. The
stimuli were presented on a 21” plasma screen at a resolu-
tion of 1024 × 768 pixels. Participants sat between 60 and
70 cm from the computer screen. Calibration of the mouse
position was ensured by forcing participant to click on a
black target circle (36 pixels across) located precisely at
the bottom-center of the screen at the start of the trial and
throughout its different phases. The optical computer mouse
was located directly on the table, rather than on a mouse-
pad, and participants had enough space around themselves
to produce natural responses.

Participants first read a sentence, using a word-by-word
self-presentation method, by clicking on the calibration but-
ton located at the bottom of the screen. After the last word
was read, a visual scene was displayed for 1 second. This
length of preview time is based on previous work using
the same stimuli as Mudrik et al. (2010), and gives enough
time to extract scene information and identify the critical
target object. The scene then disappeared, and the response
options (yes, no) were displayed at the top of the screen,

Fig. 2 An example of a trial run. A target circle is shown at
the beginning of every trial. The target ensures that all partici-
pants are calibrated to the same starting position. The target is then
clicked to display the sentence one word at time. When the last
word is reached, this triggers the presentation of the scene that
is displayed for 1000ms. After the display, the yes/no verification
buttons, equally spaced from the center of the screen, are shown

at the top of the screen. After the decision is made, the participant is
asked to rate the four questions on a Likert-scale that gauges: 1) the
plausibility of the scene, 2) the visual saliency of the target object, 3)
the congruency between the scene and the sentence, 4) the grammati-
cality of the sentence. For all ratings, the previously viewed scene and
sentence are visible, which removes the need to recall the stimuli from
memory
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counterbalanced (left/right) between participants. Once the
participant clicked on a response, the four questions were
presented one at a time across separate screens, after which
a new trial started (Fig. 2 illustrates an example trial). The
Order condition was simply created by presenting the scene
for 1 second prior to the reading of the sentence.

At the beginning of the session, participants performed
three practice trials to familiarize themselves with the
task; and each completed 100 randomized trials, and spent
between 45 and 60 minutes to complete the task.

Analysis

The dataset we analyzed contained a total of 5,851 unique
trials. We removed 8 % (549 trials) from the full dataset if
verification times were greater than 4 standard deviations
from the mean or due to machine error.

We first analyzed the accuracy of performance during
the verification task. This resulted in 5085 accurate tri-
als (≈ 87 %). Based on this set, we analyzed the time
to make a decision and the dynamics of the decision pro-
cess itself (i.e., associated mouse trajectory). In particular,
from the verification trajectory, we extracted the following
measures: (a) initial degree (the degree of deviation from
vertical after the mouse trajectory leaves a 50-pixel radius
from the starting point, same as Buetti and Kerzel (2009)),
where positive values indicate angles towards the incorrect
target (b) latency (the time taken to move outside an initial
region of 50 pixels around the starting point), (c) x-flips in
motion (the number of directional changes on the x-axis),
and (d) the area under the curve (AUC) (the trapezoidal area
between the trajectory and an imaginary line drawn directly
from the calibration button to the correct response bot-
tom). Each measure captures complementary information
about the decision process. Initial degree captures the ear-
liest response where conflict can be observed. Latency gets
at the initial hesitancy to commit to a decision, whereas x-
flips gauges uncertainty and changes of mind as the decision
unfolds. Finally, AUC is a summary measure for the overall
strength of competition toward an incorrect response, where
greater area suggests stronger competition. These measures
have been detailed in previously published research (e.g.,
Buetti and Kerzel, 2009; Freeman & Ambady, 2010; Dale
& Duran, 2011).

To perform our analysis, we employed linear mixed-
effects models based on the R statistical package lme4
(Bates et al., 2011). We built full models with all main
effects and possible interactions with a maximal-random
structure, where each random variable of the design (e.g.,
Participants), is introduced as intercept and as uncorre-
lated slope on the predictors of interest (e.g., Plausibility),
see Barr et al. (2013). We adopted this approach to also

account for the large variance observed across participants
in mouse-tracking experiments (Bruhn et al., 2014).

The dependent measures examined are: Accuracy2 (prob-
ability), Response Time (in seconds), Initial Degree (in
degrees), Latency (in seconds), x-flips (count), and AUC.
The fixed variables of our design are Congruency (Con-
gruent, Incongruent), Plausibility (Plausible, Implausible)
and Order (Scene-First, Sentence-First). The random vari-
ables of our design are Participants (64), Scenes (450, as
we have 225 scenes in two conditions of Plausibility) and
Counterbalancing (2, left and right). We report tables with
the coefficients of the predictors, their t-values, and indicate
their p-value significance.

Results

We start by examining the performance accuracy and
response time across all experimental conditions. We then
examine how the response conflict develops along the deci-
sion trajectory by looking at the measures of initial degree,
latency, x-flips, and area under the curve, which characterize
its underlying dynamics. We report both the raw observed
data (mean and SD), as well as the coefficients of the
mixed-effects maximal model.

Accuracy and reaction time

When looking at the response accuracy, we find it to be
quite high overall (≈ 87 %), indicating that participants
are able to perform the verification task correctly (refer
to Table 1). Accuracy is strongly mediated by Plausibility
and Congruency, as well as by the Order used to present
the sentence/scene pairs. In particular, participants are more
accurate when plausible stimuli are presented, and when the
sentence is presented prior to the scene (refer to Table 2 for
the model coefficients and their significance). Congruency
is not significant as a main effect, but only in interaction
with Plausibility, where implausible and congruently match-
ing stimuli are verified less accurately, independent from the
Order of presentation.

On the response times to take a decision (correct tri-
als only), we observe again a main effect of Plausibility,
whereby implausible information is verified slower than

2Note: for the dependent measures of accuracy and x-flips, we utilized
the glmer function with family set as binomial and poisson
respectively, in order to assign the linking function appropriate to the
type of data. For this reason, all estimates of accuracy should be trans-
formed using the probit transformation, if probabilities have to be
reconstructed.
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plausible information. Moreover, we confirm the interaction
between plausibility and congruency, whereby implausible
but congruent stimuli take longer to be verified.

Initial degree, latency, x-flip, and area under the curve

Table 2 reports the coefficients for the mixed-model anal-
yses of the initial degree, latency to start the movement,
the flips along the x-axis during the trajectory, and the area
sub-tending it.

From the very first moments of the trajectory (initial
degree), the participants display a larger conflict in their
response when the stimuli are implausible and congruently
matched (two-way interaction with Plausibility and Con-
gruency). This can be also seen from the observed data in
Table 1 where we observe a more positive initial angle -
with positive indexing an angular movement towards the
incorrect response - when implausible stimuli are congru-
ent. Conversely, the least deviated initial angle is observed
when implausible stimuli are incongruent. Nothing else is
observed as main effects, nor as interactions, with initial
angle.

For latency, participants hesitate more before starting
their verification when the stimuli are implausible, a pattern
similar to that observed with overall response time. Interest-
ing results on the latency are obtained as interactions with
Order of presentation. We find that when the scene is pre-
sented first and the stimuli are implausible, the participants
are faster to initiate the movement. We also find a significant
interaction between Congruency and Order, such that when
the scene is presented first, and the stimuli are incongruent,
participants take longer to initiate the movement.

The measures of x-flip and area under the curve converge
on the same significant result: implausible but congru-
ent pairs generate more complex trajectories (interaction
with Plausibility and Congruency). These results corrobo-
rate all other analyses reported above: greater conflicts on
the response are generated when implausible stimuli have to
be accepted as congruent.

In the Appendix, we also model the angular trajecto-
ries using growth-curve analysis, corroborating the results
reported above at an even finer-grained resolution. Fur-
thermore, in the Supplementary Material, we re-analyze
all summary measures presented in this study, but instead
of using the two-level categorical distinction for Plausibil-
ity (Plausible and Implausible) and Congruency (Congruent
and Incongruent) as predictors, we use the ratings provided
by the participants during question answering (refer to Fig. 2
for an example of experimental trial with these ratings). This
additional analysis largely confirms the results presented in
the main paper, and serves to demonstrate the ecological
validity of our experimental manipulations and verification
paradigm.
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Table 2 Coefficients of mixed-effects models with maximal random
structure (intercept and slopes on Participants, Scenes and Counter-
balancing). Each dependent measure, organised across columns, is
modelled as a function of the centred and contrast coded predic-
tors: Congruency (Congruent = 0.5, Incongruent = -0.5), Plausibility

(Plausible = 0.5, Implausible = -0.5), Order (Sentence-First = -0.5,
Scene-First = 0.5). We report the β with the associated p-value, and
the t-value from which it was derived

Accuracy Response Time Initial-Degree Latency X-Flip AUC

Dependent measures β t β t β t β t β t β t

Intercept 2.87∗∗∗ 23.97 1.4∗∗∗ 53.67 −4.76∗∗∗ −3.7 0.47∗∗∗ 33.86 0.29∗∗∗ 9.76 0.71∗∗∗ 55.42

Plausibility 0.51∗∗ 3.31 −0.07∗∗∗ −3.6 −0.02 −0.01 −0.02∗ −2.46 −0.02 −0.71 −0.01 −1.34

Congruency 0.005 0.04 0.02 1.11 1.39 0.45 −0.007 −0.77 0.07 1.72 0.03 0.91

Order −0.45∗∗ −3.17 −0.02 −0.5 −3.15 −1.22 0.01 0.35 −0.05 −0.76 −0.02 −0.84

Plausibility: Congruency 0.83∗∗ 2.7 −0.06∗ −2.1 −5.64∗ −2.24 −0.001 −0.52 −0.17∗∗∗ −3.69 −0.04∗∗ −2.02

Plausibility: Order 0.26 1.25 0.04 1.43 −.11 −0.44 0.04∗ 2.46 0.03 0.75 0.02 1.25

Congruency: Order −0.49 −1.51 −0.06 −1.51 −4.92 −0.79 −0.03∗ −2.14 0.06 0.78 −0.06 −0.96

Plausibility: Congruency: Order 0 0.01 −0.01 −0.19 0.19 0.04 0.001 0.05 −0.1 −1.12 0.04 1.04

* p < 0.05, ** p < 0.01, *** p < 0.001

Discussion

There has been a recent and growing interest in under-
standing the cognitive system along central principles of
predictive processing (e.g., Clark, 2013; Pickering & Clark,
2014; Lupyan & Clark, 2015). The current study adds to
these attempts by employing a task that required partici-
pants to verify whether two sequentially presented stimuli,
which also varied in plausibility of content, conveyed the
same message. In doing so, two sources of expectancy
(stimuli congruency and stimuli plausibility) were allowed
to converge and compete during verification. Moreover, in
a departure from the majority of previous research, we
examined this competition in the continuous updating of
the motor system using an action dynamics approach. This
allowed a novel view into the temporally-extended activa-
tion and resolution of competition. Whereas reaction time
primarily informs the time it takes to make a response, and
EEG on the neural resources that are recruited at a spe-
cific time, we were able to examine competition across the
earliest moments of processing and throughout a decision
process.

Our analysis of the motor movements focused on key
summary measures, including initial degree of movement,
latency of movement, x-flips, and area under the curve
(AUC). We interpreted greater latencies, increased com-
plexity, and deviations toward an incorrect response as
signaling greater processing costs and the application of
error-signal updating. All measures consistently point to
the same core result: implausible but congruently matching
stimuli generated greater response competition than incon-
gruent and implausible stimuli. A match between expecta-
tions elicited by an initial stimulus and incoming sensory

information from the second stimulus would normally facil-
itate processing. However, in our scenario, such facilitation
was actually disrupted because the incoming information
violated other expectations based on prior knowledge.

As evidenced by the computer mouse movements, when
the implausible stimulus is encountered, there is a very early
hesitation and bias to respond “no” that is activated and
persists during verification, competing with the congruency
expectation to respond “yes.”

This result is in line with current proposals of predic-
tive processing by underscoring how the cognitive system is
actively engaging generative mechanisms of active expec-
tation (i.e., predictive coding) and error correction (e.g.,
Rao & Ballard, 1999; Bar, 2007; Hinton, 2007; Kok et
al., 2012; Wacongne et al., 2012), drawing on multiple
sources of expectations from the local context (congruency
expectations) and from prior knowledge (plausibility expec-
tations). Moreover, this research helps refine current pro-
posals of predictive processing by showing that congruency
expectations can be immediately disrupted and temporarily
overridden when incoming stimuli is in violation of prior
knowledge.

The cross-modal paradigm also tested whether the direc-
tionality of the response costs are sensitive to the modality
order of presentation (i.e., sentence-first vs. scene-first)
(e.g., Clark & Chase, 1972; Federmeier & Kutas, 2001;
Pecher et al., 2003). We found hints of an asymmetry on
the latency to start the movement, especially in the angular
trajectory (see Appendix), whereby stronger conflicts are
observed when an implausible sentence is reinforced by
a subsequent congruently matching scene (sentence-first
scenario). Based on the literature on simulation models in
sentence-picture verification tasks (e.g., Zwaan et al., 2002;
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Ferguson et al., 2013), we speculate that when a sentence
is presented first, the resulting simulated imagery, opposed
to merely seeing a picture, relies on deeper connections
to prior knowledge to generate its content, and thus such
condition shows a greater sensitivity to stimulus plausibil-
ity. Future research will be needed to better assess these
asymmetries triggered by modality order by providing,
for example, greater initial linguistic context to make the
simulations even richer.

Another natural avenue of research for investigating plau-
sibility and congruency on predictive processing is to use a
fully crossed design, as in the current study, with EEG mea-
sures. Intriguing results about the impact of such sources
on neural responses have been reported, for example, by
Dikker and Pylkkanen (2011), who used a picture-name
matching task and observed a very early signature of pre-
diction violation, at around 100ms, when words did not
accurately describe the pictures. This result has recently
been corroborated by Coco et al. (2016), where congru-
ency and plausibility were found to be associated with
distinct temporal latencies, such that incongruent pairs gen-
erated revision costs as early as 100ms after the stimulus
onset, whereas implausibility begins at 250ms (e.g., same
latency of Mudrik et al. (2010) and more recently (Mudrik
et al., 2014)). Of great interest would be to compare neu-
ral responses with the behavioral patterns reported here and
draw joint conclusions about on-line stimuli processing and
later integrative verification dynamics. Other key questions
relate to the adaptation (or not) of participants to implau-
sible verification, and the amount of exposure needed to
modify prior knowledge so that implausible information is
accepted without additional costs.

In conclusion, the current study provides new evidence
for how response conflicts arise in the motor system as
decision responses are acted out. We take this as demon-
strating that the plausibility of stimuli mediates congruency
expectations in a verification task. More generally, these
results provide compelling evidence in support of a pre-
dictive processing account by showing that the matching
of congruency expectations is not sufficient for facilitating
cognitive processing, but depends greatly on the plausibility
of information that is being integrated.
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Appendix: Angular verification trajectories

In this Appendix, we report a finer-grained analysis of the
angular trajectory, which largely corroborates the results
presented in the main text; and provides greater detail about
the role played by Order of presentation.

We visualize the x,y trajectory over time as angular
values along the x-axis, which is where the most obvi-
ous changes in the trajectory happen (Scherbaum et al.,
2010; Dshemuchadse et al., 2013). The angle is calculated
as the tangent along the trajectory with values above 0
conventionally representing the direction towards the cor-
rect response option. Negative angular values would instead
be regarded as movement toward the incorrect, competitor
response option. As trials were self-terminated, the trajec-
tories differed in their number of time points. We adopted
the approach proposed by Spivey et al. (2005) where tra-
jectories are linearly interpolated (up- or down-sampled) to
be scaled all within 51 time-bins, which is around the mean
(56.35 ± 30.64) and median (51) number of time-points
observed overall.

Angular trajectory is a dependent measure that unfolds
over the normalized time bins. Thus, in our linear-mixed
effects model, we add a predictor for Time, which we
represent as an orthogonal polynomial of order three and
captures the curvilinear dynamic of the trajectory (see Mir-
man (2014) for a detailed explanation of the framework).
The linear term of the polynomial has exactly the same inter-
pretation as a linear regression of the dependent measure
over time (Time1). In the trajectory, this term points at the
overall change in the direction. The quadratic term can be
used to identify sudden changes in the linear trend, e.g.,
a decrease followed by an increase (Time2). In the trajec-
tory, this term points at the overall shape of the direction,
i.e., whether it tends to go towards the correct or competitor
response. The cubic term can be used to identify early and
late effects in the trend (Time3). In the trajectory, this term
points at whether it initially deviates towards the competitor,
i.e., negative values, or the correct response.

We visualize observed data as shaded bands indicat-
ing the standard error around the mean, and overlay the
mean estimate of model fits as lines. We report tables with
the coefficients of the predictors, significant at p < .05,
their standard error, and derive p-values from the t-values
for each of the factors in the model. The t-distribution
converges to a z-distribution when there are enough obser-
vations (our data contains 264,180 points), and hence we
can use a normal approximation to calculate p-values.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Fig. 3 Angular trajectory over 51 interpolated time-bins for the
two Order of Presentation: Sentence-First (top-row); Scene-First
(bottom-row). Congruency is organized as panels (Congruent- Left;
Incongruent - Right), while Plausibility is plotted within each panel
as line types (Plausible - solid line; Implausible - dotted line).

The shaded bands indicate the standard error around the observed
mean. The lines represent the predicted values of the LME model
reported in Table 3. In the right corner of each plot, we zoom into
the first 20 bins of the observed trajectory to highlight its earliest
revision-dynamics
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Table 3 Mixed-effect maximal model analysis of the angular trajectory

Predictor β SE t p

Intercept 0.344 0.069 4.973 .00001

Time1 2.287 0.044 51.217 .00001

Time2 0.187 0.057 3.25 .001

Time3 −0.602 0.035 −16.964 .00001

Congruency:Time1 −0.057 0.015 −3.621 .001

Congruency:Time2 0.143 0.015 9.004 .00001

Congruency:Time3 −0.031 0.015 −1.995 0.05

Plausibility:Time3 −0.076 0.035 −2.136 0.03

Congruency:Plausibility:Time2 −0.164 0.031 −5.191 .00001

Congruency:Plausibility:Order 0.034 0.009 3.545 0.001

Plausibility:Order:Time2 −0.080 0.030 −2.629 0.01

Congruency:Order:Time1 0.178 0.031 5.746 .00001

Congruency:Order:Time2 0.232 0.031 7.509 .00001

Congruency:Order:Time3 −0.170 0.031 −5.52 .00001

Congruency:Plausibility:Order:Time1 −0.156 0.062 −2.519 0.01

Congruency:Plausibility:Order:Time2 −0.154 0.062 −2.493 0.01

The fixed effects of the model, contrast coded, are: Congruency (Incongruent: −0.5, Congruent: 0.5), Plausibility (Implausible: −0.5, Plausibile:
0.5), Order (Scene-First = -0.5, Sentence-First = 0.5). Time (51 bins) is represented as an orthogonal polynomial of order three (Time1, Time2,
Time3). Random intercepts and slopes on Participant (64) and Scene (450)

In Fig. 3, we plot the angular trajectory followed by
the participants as they correctly verified the Congruency
of the pair of stimuli (Sentence-First, top-row; Scene-First,
bottom-row); and zoomed in on the earliest section of
the trajectory to visualize the initial stages of the deci-
sion process. In order to simplify the understanding of
our results, we focus on the significant terms, and espe-
cially on those corroborating with the summary measures
reported above in the main text (refer to Table 3 for model
coefficients).

Almost all effects on the trajectory are captured by
interactions between Congruency, Plausibility, and Order,
with the polynomial terms of Time. We find that incon-
gruent verifications are re-directed more decisively towards
the correct response (Congruency:Time1), especially later
in the trajectory (Congruency:Time3), but have an overall
negative bowing, i.e., more deviated pull towards the incor-
rect response than congruent trials (Congruency:Time2). We
also find implausible trials displaying an early deviation
towards the incorrect response (Plausibility:Time3).

When looking at three-ways interactions, we find that for
implausible, congruently matched stimuli, these generate a
more protracted deviation in the trajectory than incongruent
trials (Congruency:Plausibility:Time2). This result corrob-
orates the summary measures reported in the main text.
Moreover, this pattern is particularly prominent when the
sentence is presented first (refer to the β for the three-way
interaction Congruency:Plausibility:Order in Table 3) This

effect is also rather evident in Fig. 3, top -row (Sentence-
First), where there is consistent deviation towards the incor-
rect response, lasting until the end of the trajectory.

Further examination of Order reveals that when the
scene is presented first, incongruent verifications devi-
ate more strongly in the initial phases of the trajectory
(Congruency:Order:Time3); such deviations are quickly
recovered as indicated by the positive three-ways interaction
of Congruency:Order:Time1 and Congruency:Order:Time2.
For Plausibility instead, when the scene is presented as
a second stimulus, we find the trajectory to present an
overall negative bowing toward the incorrect response
(Plausibility:Order:Time2).

Finally, when looking at the four-way interaction,
we find that after an initial hesitation, participants cor-
rected their arm movement trajectories towards the correct
response more rapidly when implausible stimuli congru-
ently matched, and the sentence served as the initial stimu-
lus, i.e., a positively linear trajectory with an upward bowing
trend.

In summary, on arm movement trajectories, we confirm
electrophysiology research, whereby implausible stimuli are
associated with greater competition costs. Also, incongru-
ency causes an overall more deviated trajectory. However,
in the current paradigm examining response movement
dynamics, effects occur also after the stimuli had been
initially encountered. In addition, our study also shows
that implausible but congruently matching stimuli generate
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higher competition costs than incongruent and implausi-
ble stimuli. In this case, implausible messages have to
be accepted as congruent, even though they violate prior
knowledge, i.e., boys do not normally eat bricks. This result
was particularly strong when the sentence was presented
prior to the scene. The effects of Order of presentation were
captured in the angular trajectory but not in the summary
measures, because here we include the time-course com-
ponent, and have a much larger number of data points to
estimate the parameter coefficients.
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