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A B S T R A C T   

Collaborative problem solving (CPS) is an essential skill for the 21st century workforce but remains difficult to 
assess. Understanding how CPS skills affect CPS performance outcomes can inform CPS training, task design, 
feedback design, and automated assessment. We investigated CPS behaviors (individually and in co-occurring 
patterns) in 101 (N = 303) remote triads who collaboratively played an educational game called Physics Play-
ground for 45-min. Team interactions consisted of open-ended speech occurring over videoconferencing with 
screen sharing. We coded participant’s utterances relative to a CPS framework consisting of three facets (i.e., 
competencies such as constructing shared knowledge) manifested in 19 specific indicators (e.g., responds to 
others’ questions/ideas). A matching technique was used to isolate the effect of CPS behaviors on CPS outcomes 
(quality of solution of a game level) controlling for pertinent covariates. Mixed-effects ordinal regression models 
indicated that proposing solution ideas and discussing results were the major predictors of CPS performance, and 
that team-member activities surrounding idea generation mattered. These findings highlighted the importance of 
both individual and collective contributions and social and cognitive skills in successful CPS outcomes.   

1. Introduction 

From a trio of classmates working on a project, to a crew of fire-
fighters containing a forest fire, to a medical team battling a novel global 
pandemic, collaborative problem solving (CPS) is part-and-parcel of our 
everyday experience. CPS generally refers to a situation where two or 
more people pool their knowledge and skills to solve complex problems 
without predefined solutions. The set of actions and interactions that 
occur during the problem-solving effort can be indicative of CPS skills, 
which include both collaboration and problem-solving skills (see Hesse, 
Care, Buder, Sassenberg, & Griffin, 2015; OECD, 2017). 

CPS skills have increasingly been viewed as essential in many con-
texts, such as in schools (e.g., OECD, 2017; Scoular & Care, 2020), 
informal learning settings (e.g., Huang et al., 2018), online learning (e. 
g., Rosen, Wolf, & Stoeffler, 2020), military settings (e.g., Swiecki, Ruis, 
Farrell, & Shaffer, 2020), business services (Aarikka-Stenroos & Jaak-
kola, 2012), and marketing innovations (Heirati & Siahtiri, 2019) to 

name a few. Indeed, the ever-growing importance of CPS skills in today’s 
interconnected world is acknowledged by multiple frameworks of 21st 
century skills (e.g., Andrews-Todd & Forsyth, 2020; OECD, 2017). 
However, a fundamental question needed for understanding, assessing, 
and training CPS skills remains unanswered: What particular CPS be-
haviors give rise to successful problem-solving outcomes? 

We address this foundational question by identifying: (1) basic and 
essential individual CPS behaviors, and (2) key interactive patterns among 
triads that contribute to successful problem-solving outcomes. Our study 
makes three novel contributions to the literature. First, we explored 
collaboration among triads. This goes beyond current research which 
mainly examines students collaborating in dyads, resulting in precious 
little knowledge about how larger groups interact with each other and 
form an effective team. Researchers have argued that dyads have too few 
degrees of freedom to reflect the complexity of group behaviors 
(Moreland, 2010; Reiter-Palmon, Sinha, Gevers, Odobez, & Volpe, 
2017). For example, triads have seven degrees of freedom (i.e., three 
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individuals, three possible dyads, and one triad) compared to three 
degrees of freedom with dyads. Second, we tackled the complexity of 
natural spoken communication among the triads instead of asking them 
to interact with a pre-programmed computer agent (e.g., Stoeffler, 
Rosen, Bolsinova, & von Davier, 2020) or type in a chat box (e.g., Sco-
ular & Care, 2020). The chat box is convenient for documenting all 
dialogue in log files, but the interruption of communication required by 
typing potentially hinders the understanding of team dynamics in 
real-life scenarios. Conversely, natural discourse allows for a wide range 
of opportunities for communication patterns to occur. Thus, the current 
literature does not provide us with a deep understanding of natural 
communication relative to CPS outcomes. Third, we examined CPS 
while people collaborated while playing an engaging digital game, 
which mirrors a real-life CPS scenario (i.e., friends hanging out and 
playing games together). Currently, many existing CPS tasks are situated 
in simulation-based learning tasks (e.g., Andrews-Todd & Forsyth, 2020; 
Hao, Liu, Kyllonen, Flor, & von Davier, 2019), which may be less 
engaging than digital games. 

1.1. Status quo of collaborative problem solving assessments 

In line with its expanding importance as an essential skill for people 
to master in the 21st century, researchers have been developing various 
theoretical models and frameworks specifying CPS skills, associated 
behaviors, and assessments (e.g., Andrews-Todd & Forsyth, 2020; Hesse 
et al., 2015; OECD, 2017; Sun et al., 2020; von Davier, Hao, Liu, & 
Kyllonen, 2017). For instance, in 2015, the Programme for International 
Student Assessment (PISA) conducted an international assessment of 
CPS among 15-year-old students in over 70 countries and regions. In this 
large-scale CPS assessment, students were tasked with interacting with a 
computer agent (not another human) by choosing appropriate responses 
from pre-defined response options. Students’ CPS skills were then 
evaluated based on the quality of their submitted choices. Critics of the 
PISA assessment have focused on the constrained nature of human-agent 
interactions, which does not represent naturalistic communication 
among humans as the responses from the agent are pre-programmed and 
the human responses are limited to the provided choices (Graesser, 
Greiff, Stadler, & Shubeck, 2020; Herborn, Stadler, Mustafić, & Greiff, 
2020). However, for a large-scale standardized assessment of CPS, 
interacting with computer agents is a feasible, consistent, and pragmatic 
way to measure students’ CPS skills (Hao et al., 2019). 

Beyond standardized assessments, in real-life scenarios, CPS requires 
complex open-ended human-human interactions where people draw on 
each other’s knowledge, skills, and other abilities to solve problems 
(Care et al., 2017). Consequently, there has recently been an increase in 
research on how to accurately assess CPS skills in authentic human- 
human interactive environments. For example, recent assessments 
have attempted to capture naturalistic dyadic interactions within 
various CPS tasks (e.g., Ostrander et al., 2020; Scoular & Care, 2020). 
However, much less research has explored how to accurately assess 
naturalistic human-human CPS interactions in triads (e.g., Andrew-
s-Todd & Forsyth, 2020; Sun et al., 2020) as we do in the present study. 
In addition, researchers have argued that dyads and triads represent 
qualitatively different types of collaboration. For example, triads can 
generate more complex group phenomena than dyads, such as formation 
of a coalition (Moreland, 2010). Also, communication and negotiation 
are more complicated in triads than with dyads (Reiter-Palmon et al., 
2017) because of the added degrees of freedom where the referent of a 
communication needs to be made more explicit. Because many CPS 
real-world tasks entail groups larger than dyads, investigating triads is 
itself a worthy endeavor. 

Beyond group size, the communicative medium is also an important 
factor to consider. Current CPS research mainly takes two approaches to 
analyzing naturalistic human-human CPS interactions. One approach 
used in computer-supported CPS environments is to ask people to type in 
their comments/responses into a chat box, which are automatically 

logged by the computer (e.g., Andrews-Todd & Forsyth, 2020; Scoular & 
Care, 2020). The other approach is to audio/video record the CPS 
interaction which might unfold either face-to-face or remotely (e.g., Sun 
et al., 2020; Swiecki et al., 2020). Compared with chat box conversa-
tions, the recordings produce much richer and more abundant streams of 
naturalistic communication data. Typing also tends to be more delib-
erate than spontaneous speech (D’Mello, Dowell, & Graesser, 2011). In 
our study, we adopted the latter approach where we video recorded 
participants’ open-ended spoken interactions while they engaged in CPS 
tasks. We also opted for remote collaborations, which have increased 
tremendously in education and in the workplace (Dowell, Lin, Godfrey, 
& Brooks, 2020; Schulze & Krumm, 2017). The demand for remote 
collaborations is especially prominent, given current events, as with the 
COVID-19 pandemic. However, remote collaborations have additional 
challenges, including technological limitations (e.g., low bandwidth), 
loss of some non-verbal information, cultural differences, and even time 
differences (Schulze and Krumm, 2017; Vrzakova, Amon, Rees, Faber, & 
D’Mello, 2020). Thus, investigating remote human-human collaboration 
is an additional contribution to the CPS literature. 

1.2. CPS analysis frameworks 

Several frameworks reported in the literature have been used to 
analyze CPS behaviors in learning contexts. Table 1 summarizes the 
categorization of CPS skills by three main frameworks. All three 
frameworks consistently view CPS as two separate skill sets: cognitive 
and social. The three frameworks also show commonalities in essential 
CPS behaviors, such as establishing shared understanding, negotiation, 
and carrying out solution plans. 

One established CPS framework is the Assessment and Teaching of 
21st century Skills (ATC21S), by Hesse et al. (2015), which explicates 
the individual (rather than collective) contributions of the social and 
cognitive skills to the problem-solving space (Scoular, Care, & Hesse, 
2017). Similarly, the well-known PISA framework of CPS (OECD, 2017) 
dissects the CPS construct into the interplay of collaboration (social) and 
problem-solving skills (cognitive). The three collaborative skills and the 
four problem-solving skills comprise a matrix of 12 CPS skills (see OECD, 
2017 for details). As with the other two frameworks, the CPS ontology 
(Andrews-Todd & Forsyth, 2020) also categorizes the CPS construct into 
social and cognitive dimensions, with the social dimension focusing on 
collaboration and teamwork, and the cognitive on problem-solving 
processes. This ontology included relevant data that can be collected 
from chat messages and logged events (e.g., students modifying 
parameter input) during computer-supported CPS tasks. 

Table 1 
Summary of three main CPS frameworks.   

PISA CPS Framework 
(OECD, 2017) 

ATC21S CPS 
Framework (Hesse 
et al., 2015) 

CPS Ontology ( 
Andrews-Todd & 
Forsyth, 2020) 

Social 
Skills 

Establishing and 
maintaining shared 
understanding 

Participation Maintaining 
communication 

Taking action to 
solve problems 

Perspective taking Sharing information 

Establishing and 
maintaining team 
organization 

Social regulation Establishing shared 
understanding   

Negotiating 
Cognitive 

Skills 
Exploring and 
understanding 

Task regulation Exploring and 
understanding 

Representing and 
formulating 

Knowledge 
building 

Representing and 
formulating 

Planning and 
executing  

Planning 

Monitoring and 
reflecting  

Executing   

Monitoring  
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2. Processes and outcomes in collaborative problem solving 

Researchers have been assessing people’s CPS skills from two angles: 
CPS processes and subsequent outcomes. When people are engaged in 
CPS tasks, they generate CPS process data, which refers to sequential 
events (e.g., actions and utterances) related to dynamic interactions 
(von Davier et al., 2017). CPS outcomes are generally measured by the 
correctness of responses to a question or the overall success of problem 
solving (Hao et al., 2019; von Davier et al., 2017). CPS outcomes can 
also be subjective, for example, peoples’ perceptions of the collaboration 
process and their teammates (e.g., Meier, Spada, & Rummel, 2007). 

The paths connecting CPS processes to problem-solving outcomes are 
many. A team can demonstrate appropriate CPS behaviors but still have 
an unsuccessful outcome, especially if the problem is too difficult, the 
team lacks sufficient knowledge to solve the problem, or pursues an 
incorrect strategy (e.g., Hmelo, Nagarajan, & Day, 2000; Hmelo-Silver, 
2003). Alternatively, a team may be successful at solving the problem, 
yet demonstrate poor CPS behaviors, like when a dominant member of 
the team solves the problem without input from others, or there is 
considerable conflict within the team (Rosen et al., 2020). In short, 
because CPS processes involve both cognitive and social behaviors, 
strengths in one but not the other can lead to varying outcomes 
depending on how the outcome is defined. 

As there are multiple ways that CPS processes can contribute to 
successful outcomes, much depends on the ways that CPS behaviors and 
outcomes are operationalized. For instance, Hao, Liu, von Davier, Kyl-
lonen, and Kitchen (2016) operationalized CPS into four general skills: 
sharing ideas, negotiation, regulating problem solving, and maintaining 
communication. They analyzed dyadic typed dialogues by categorizing 
each turn of the conversation into one of the four skills, and found that 
successful teams demonstrated significantly greater negotiation skills 
compared with unsuccessful teams. The other three skills did not predict 
the CPS outcome. 

Some researchers have attempted to use linguistic features to inter-
pret CPS communication. For example, Reilly and Schneider (2019) 
used linguistic features (e.g., length of sentences and part of speech) to 
predict collaboration and learning when dyads interacted face-to-face. 
The length of utterances positively correlated with collaboration qual-
ity. Using domain-specific words and clear references in communication 
correlated with learning. One drawback of the study relates to the ac-
curate interpretation of the content of communications. Recently, taking 
semantic meanings into account, Dowell et al. (2020) applied a 
computational linguistic analysis to analyze dyadic text-based commu-
nication in a CPS simulation task on volcano eruption. They analyzed the 
text in terms of participation, social impact, overall responsivity, 
newness, internal cohesion, and communication density. They identified 
five emergent roles adopted by participants during collaboration (i.e., 
influential actors, drivers, followers, lurkers, and socially detached 
learners). They found that socially active roles (i.e., influential actors 
and drivers) helped the team to obtain better outcomes than those with 
socially disengaged roles (e.g., socially detached learners). 

Forsyth, Andrews-Todd, and Steinberg (2020) examined 
fine-grained CPS behaviors consisting of 23 CPS subskills. They used 
cluster analyses on those coded CPS behaviors to identify four types of 
collaborators (i.e., active collaborators, super socials, low collaborators, 
and social loafers) based on interactions in a computer-mediated CPS 
environment with typed chat among triads. They found significant 
correlations between collaborator type with various measures (e.g., 
number of levels attempted and self-reported CPS skills). In the analysis, 
the researchers did not address confounding variables such as verbosity, 
so it is unclear if the clusters contributed additional information beyond 
the volume of content. Similarly, Chang et al. (2017) analyzed CPS 
patterns, based on the PISA framework, in a simulation task with typed 
chat. With a small sample size of 10 triads, they identified four groups 
that successfully solved simulation tasks, and six groups that did not 
solve the simulation tasks. A lag sequential analysis indicated that the 

unsuccessful groups repeatedly and unsystematically tested different 
values in the simulation task and failed to come up with executable 
solutions from their discussions. Meanwhile, successful teams demon-
strated analytical and reasoning strategies where they iteratively shared 
understanding, executed possible solutions, and monitored results. 

In conclusion, current studies have mainly focus on typed chat and 
dyadic CPS, which motivated us to investigate natural dialogues 
generated by triadic interactions. Although these studies have provided 
some initial insights, they have not provided a clear picture and 
consistent findings regarding the link between CPS processes and task 
performance. Further research is needed to understand the complexity 
and dynamics of triadic CPS interaction with respect to problem solving 
performance, especially when triads are communicating freely and 
verbally in open-ended problem-solving environments. Therefore, our 
study contributes to the understanding of triadic CPS behaviors in 
relation to outcomes by analyzing CPS communications at a fine-grained 
size. 

2.1. Current study 

The goal of our study was to shed light on the relationship between 
CPS behaviors and problem-solving success as triads interacted remotely 
(i.e., via videoconferencing) to collaboratively solve problems within a 
computer-based educational game called Physics Playground (Shute, 
Almond, & Rahimi, 2019). In our CPS task, all members of a triad 
interacted with each other using spoken language rather than using a 
chat box to communicate. Such natural triadic interactions posed some 
challenges regarding understanding and interpreting the 
inter-connected actions. Accordingly, we adopted and updated a 
generalized CPS model developed to analyze peoples’ behaviors in CPS 
tasks (Sun et al., 2020) and trained human raters to code a subset of 
utterances generated by the triads as they engaged in CPS tasks. And 
despite being quite labor intensive, human ratings can help to ensure the 
accuracy of classifying utterances into relevant CPS behaviors (in-
dicators in our case), which is important before proceeding to auto-
mated modeling of triadic interactions. 

Our analyses examined specific CPS indicators that were related to 
team outcomes (coin earned for solving a game level in our case) after 
accounting for baseline communication context (e.g., length of time, 
verbosity). Further, inspired by research investigating communicative 
patterns, such as epistemic network analysis (Csanadi, Eagan, Kollar, 
Shaffer, & Fischer, 2018) and group communication analysis (Dowell, 
Nixon, & Graesser, 2019), we conducted a preliminary analysis to 
identify frequently occurring discourse patterns (i.e., co-occurring in-
dicators) that predicted CPS outcomes beyond the individual indicators. 
In sum, our work contributes to understanding how CPS behaviors – at 
both the indicator and pattern level – predict successful CPS outcomes in 
an open-ended, spoken, triadic, computer-mediated, remote CPS 
environment. 

3. Method 

The data were collected as part of a larger study on collaborative 
problem solving (Eloy et al., 2019), but only the details pertinent to the 
present study are reported here. The primary data source reported here 
consisted of CPS codes of verbal utterances; these data have not been 
previously analyzed or published elsewhere. 

3.1. Participants 

Participants were 303 undergraduates (56% female, average age =
22 years) from two large public universities (39% from University 1). 
Participants self-reported the following race/ethnicities: 47% Cauca-
sian, 28% Hispanic/Latino, 18% Asian, 2% Black or African American, 
1% American Indian or Alaska Native, and 4% “other.” Participants 
were assigned to 101 triads based on scheduling constraints. Thirty 
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participants from 18 teams (26%) indicated they knew at least one 
person from their team prior to participation. Participants were 
compensated with a $50 Amazon gift card (96%) or course credit (4%) 
at the end of the study. 

3.2. CPS task 

We used a digital game, Physics Playground (Shute et al., 2019) 
intended to help young adults learn Newtonian physics (e.g., Newton’s 
laws of force and motion). The overarching goal of this game is to direct 
a green ball to hit a red balloon. To solve game levels, participants need 
to draw appropriate simple machines (e.g., lever and springboard) on 
the screen using a mouse (Fig. 1). The simple machines come “alive” on 
the screen after being drawn as they obey the laws of physics (as does 
everything in the game). Players receive a gold coin when they solve the 
level efficiently (i.e., with minimal objects), and they receive a silver 
coin for a less efficient solution using more objects. No coin is rewarded 
for unsolved levels. 

We selected 17 game levels covering two physics concepts: nine 
levels related to “energy can transfer” (EcT), and eight levels related to 
“properties of torque” (PoT). Example subconcepts include kinetic en-
ergy, gravitational potential energy, angular acceleration, and angular 
momentum. The 17 levels varied in terms of difficulty (as rated by two 
physics experts). The levels were organized within three “playgrounds” 
(detailed below). Players could freely navigate through levels in their 
current playground and pick which levels to solve. They could also 
restart a particular level within their playground as many times as they 
liked as well as quit a level at will. They could also revisit tutorials 
illustrating the game mechanics at any time, but no additional hints 
were provided. 

3.3. Procedure 

There was an at-home and in-lab portion to the experiment. Partic-
ipants were emailed a Qualtrics survey with an embedded short tutorial 
on how to use Physics Playground at least 24 h prior to participating in 
the lab session. Participants needed to complete a pretest on their 
knowledge of the targeted physics concepts—energy can transfer and 
properties of torque. The pretest had two parallel forms (form A and 
form B) of ten items created by physics experts. In the tutorial, partici-
pants were instructed on the object of the game, as well as how to draw 
simple machines. After completing the tutorial, participants were given 
15 min to complete five easy levels to familiarize themselves with the 
game. Participants also completed a battery of individual difference 
measures, not analyzed here. 

Participants were scheduled in groups of three based on availability. 
Upon arrival in the lab, participants were individually assigned to one of 
three computer-enabled workstations equipped with a webcam and 

headset microphone, either partitioned in different corners of the same 
room or located in different rooms, depending on the University where 
the data were collected. All collaborations occurred via Zoom video-
conferencing software irrespective of the layout since the goal was to 
study remote collaborations. There were additional sensors at each 
workstation which are not germane to our current analyses. Zoom re-
cordings of all collaborations were retained for analysis. 

Teams (consisting of three participants) collaboratively solved levels 
in Physics Playground across three 15-min blocks, totaling 45-min of 
collaborative gameplay. During each block, one teammate was 
randomly assigned the role of controller and the other two were con-
tributors. The controller was in charge of all mouse interactions with 
Physics Playground (Fig. 2). The controller’s screen was shared via Zoom, 
such that the contributors could view gameplay and contribute to the 
solution of the level. The role of controller randomly rotated so each 
teammate served as controller for one block. There was a fourth block of 
a separate collaborative task not analyzed here. 

The first block served as a warmup. Participants were instructed 
verbally and with on-screen instructions to use the time to familiarize 
themselves with their teammates and play a few levels together. During 
this time, they were given five easy-to-medium levels in a playground 
involving a mix of EcT and PoT concepts. Teams then completed two 15- 
min experimental blocks, where each block was assigned a different CPS 
goal (this was an experimental manipulation for another purpose). In 
one goal manipulation, teams were instructed to “solve as many levels as 
possible.” The purpose of this was to prioritize the quantity of levels 
solved. In the other manipulation, teams were instructed to “get as many 
gold coins as possible.” In that case, the purpose was to focus teams on 
solution quality. Teams were reminded that gold coins are earned by 
using fewer objects in their solutions indicating more elegant solutions. 
Instructions for the experimental block were provided verbally and on 
screen. 

We also manipulated the physics concept. Teams were either pre-
sented with seven EcT levels or six PoT levels in separate playgrounds 
(all were rated as medium to hard difficulty) within the two experi-
mental blocks. The particular goal and physics concept were counter-
balanced across teams in a 2 × 2 (goal × concept) within-subject design. 

Across all three blocks, teams received on-screen warnings when 
they had ten and 5 min left in the block. They were also reminded of 
their assigned goal (levels or gold coins) along with the warning. 

3.4. Measures 

In-game performance. There were three possible outcomes for each 
level attempt in the game: (1) the team did not solve the level within the 
allotted time or they quit the level, and thus no coin was awarded; (2) 
they solved the level using a limited number of objects (i.e., efficient/ 
creative solution) and received a gold coin; or (3) they solved the level 

Fig. 1. Spider web: A level involving the physics concept of energy can transfer a springboard drawn with a weight at the end (Left); The ball shooting for the balloon 
when the weight was released (Right). 
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with a less efficient solution and received a silver coin. Earning either a 
silver or gold coin was considered a successful level attempt. 

3.5. Coding CPS behaviors 

Our study focused on coding CPS behaviors from free verbal 
communication while collaboratively playing the game. We used a 
validated CPS framework and a level matching scheme to code a subset 
of the in-game data as elaborated below. 

Coding Framework. To measure participants’ CPS behaviors, we 
adapted and revised a validated CPS framework suitable for coding 
open-ended trialogues as in the present study (Sun et al., 2020). The 
model was derived from existing CPS frameworks (see the CPS frame-
works section above) and consists of three main CPS facets: constructing 
shared knowledge, negotiation/coordination, and maintaining team 
function. Constructing shared knowledge refers to (a) disseminating 
knowledge, ideas, and resources among team members, and (b) estab-
lishing common ground for understanding the task and solutions, both 
of which have been emphasized in the literature (Andrews-Todd & 
Forsyth, 2020; OECD, 2017; Roschelle & Teasley, 1995). Negotiation 
and coordination relate to the processes involved with reaching a 
consensus on a solution plan to be carried out. This includes the dividing 
of labor, resolving conflicts, integrating different perspectives, and 
monitoring execution (Andrews-Todd & Forsyth, 2020; Hesse et al., 
2015; Rummel & Spada, 2005). The third facet emphasizes efforts to 
maintain a functional team via assuming individual responsibilities, 
taking initiative, and co-regulation (Care, Scoular, & Griffin, 2016; 
Hesse et al., 2015; Rosen, 2017). 

In the current paper, we slightly refined the earlier model regarding 
particular indicators that are associated with each facet (see Table 2, for 
details). The model, then and now, viewed the social and cognitive as-
pects as closely intertwined, and aimed to analyze CPS skills of in-
dividuals playing digital games together. There are 19 indicators aligned 
to the various CPS facets (Table 2). Most (68%) of the indicators are 
positive, suggesting desirable behaviors (and higher CPS skills), whereas 

others are negative (denoted by “R” implying they are reverse coded). 
Based on previous data using this model and task (Sun et al., 2020), we 
focused solely on verbal indicators because nonverbal indicators (e.g., 
visibly not focused on the task) rarely occurred. 

We refined certain indicators to reflect the quality of problem solv-
ing. Specifically, we divided the previous indicator (suggests potential 
ideas) into (a) suggests appropriate ideas, and (b) suggests inappropriate 
ideas. Appropriate ideas refer to proposed suggestions that are relevant 
for the given the circumstances in a level although they are not guar-
anteed to succeed. For example, a student may suggest drawing a 
heavier weight if the current weight in Fig. 1 did not launch the ball 
close enough to the balloon. Alternatively, a student may suggest using a 
lever to launch the ball, which is also appropriate to solve the level. 
Thus, appropriate ideas reflect students’ current understanding of the 
problem and their ability to help others build knowledge, whereas 
inappropriate ideas reflect lack of knowledge in tackling the current 
situation which can potentially mislead team members into pursuing a 
futile path. Importantly, the indicators now capture the appropriateness 
of potential ideas – not implemented attempts, but again, do not guar-
antee a successful solution. As such, they do not encode problem solving 
success. We include comparison models to investigate whether the mere 
quantity (not differentiating among appropriate/inappropriate ideas) is 
sufficient for predicting CPS outcomes. 

In addition to the two new indicators described above (i.e., suggests 
appropriate vs. inappropriate ideas), we added four more indicators to 
the new CPS framework: questions/corrects others’ mistakes, strategizes to 
achieve task goals, tries to quickly save almost successful attempts, and 
apologizes for one’s mistakes, since we observed their occurrence during 
preliminary analyses of the data. For detailed descriptions and example 
utterances per indicator, see Table 2. 

Coding procedure. To code the utterances generated during 
gameplay, we used IBM Watson—speech recognition software—to 
segment each participants’ audio stream into individual utterances. We 
then merged utterances spoken by the same speaker within 2 s to address 
segmentation errors, and identified duplicates in the transcript arising 

Fig. 2. A triad working collaboratively to solve a level using a lever and weights.  
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from audio interference. The utterances from the three speakers were 
then merged into a cohesive transcript based on timestamps. Although 
we used speech recognition software to generate the transcripts as it is 
less resource intensive, the coders had access to the full audio and 
screen-capture videos to verify transcribed utterances throughout the 
process. 

The coders rated each of the utterances in terms of whether the 
specific utterance contained evidence of any of the indicators and coded 
the frequency of occurrence for each indicator. The coders viewed the 
video recordings (with included audio as in Fig. 2) of gameplay while 

Table 2 
Coding scheme-descriptions and example utterances for each indicator.  

Indicators/Facets Description and Coding Notes 

Constructing shared knowledge 
1. Talks about the challenge 

situation  
● Talks about the challenge/game environment 

(e.g., “What does that do?”; “Where is the 
start?”)  

● Talks about the challenge/game mechanics (e. 
g., “How do I delete this?”; “How do I restart the 
level?”)  

● Talks about the challenge criteria (e.g., “We 
need to get gold coins”; “Use as few objects as 
possible”)  

● Talks about something that’s already on the 
screen when the player enters a level (e.g., 
“What’s that?”, “Is that a spider?”, “Can we 
delete that?”)  

● Talks about time (e.g., “10 min left”)  
● Talks about computer error, program glitches 

(e.g., “it’s lagging”, “it’s not letting me draw 
XX.”) 

2. Suggests appropriate ideas  ● Proposes appropriate ideas to solve the level 
(e.g., “Try to make a weight attached”)  

● Proposes appropriate ways to fix a failed 
solution (e.g., “Make it shorter”, “This didn’t 
work because …”)  

● Appropriate means that the idea is consistent 
with the underlying Physics in game context. 

3. Suggests inappropriate ideas  ● Proposes inappropriate ideas to solve the level 
(e.g., ideas do not make physics sense)  

● Proposes inappropriate ways to fix a failed 
solution (e.g., suggests lowering pendulum 
arm when height should be increased). 

4. Confirms understanding  ● Asks questions for clarification (e.g., “What?”, 
“Is this what you are asking?”,” What’s next?”)  

● Reiterates or paraphrases another person’s 
idea (e.g., “Do you want me to …”, “Ok, make it 
heavier”)  

● Should occur after the proposal of a solution. 
5. Interrupts others (R)  ● Anytime a person is in the middle of speaking 

and another person jumps in.  
● Does not count if two people start talking at 

the same time. 
Negotiation & Coordination 
6. Provides reasons to support a 

solution  
● Reasons should be substantial and offer clear 

logic (e.g., “Hopefully, it will spring upwards and 
hit the balloon”.)  

● Pay attention to signaling words “because”, 
“and then it will …” Do not code: “Cuz, ya 
know.”; “Because, yeah” 

7. Questions/Corrects others’ 
mistakes  

● Tries to point out and/or correct the mistakes 
in others’ ideas/solutions (e.g., “I think this 
would get stuck on the green line”, “Wouldn’t it 
hit the wall?”).  

● Code if the player draws incorrectly, someone 
proposes a solution to correct their mistake. 

8. Responds to other’s 
questions/ideas  

● Responds to another’s ideas/questions (e.g., 
“That’s what I was thinking”, “No I don’t agree”)  

● Responds to a Yes/No question (e.g., “yes”, 
“no”, “not sure”, “I don’t know”)  

● Responds to “what/which do you think?” or 
similar questions  

● Code if the answer is simply, “up to you”, “I 
don’t mind”, etc. If the answer is an 
elaboration, code it with respect to other 
appropriate indicators.  

● If the answer is “you can try it”, “go ahead and 
try it”, code it as “compliments or encourages 
others”. 

9. Criticizes, makes fun of, or 
being rude to other (R)  

● Makes disparaging or rude remarks about 
other player’s or their ideas. 

10. Discusses the results  ● Provides substantial and specific comments 
about the results (e.g., “The ball fell off the 
screen”, “It stuck on the pink thing”).  

● Do not code general comments: “What 
happened”, “oh no”, “that worked”, “we are 
close”.  

Table 2 (continued ) 

Indicators/Facets Description and Coding Notes  

● Identifies the cause of a failed solution and 
reflect on what has been done. (e.g., “The line 
was too short”, “Not heavy enough”). 

11. Brings up giving up the 
challenge (R)  

● Talks about quitting or moving to a different/ 
easier level (e.g., “Can we try another level?”)  

● Do not count if a person simply talks about the 
level being difficult or hard. They must bring 
up quitting. 

12. Strategizes to accomplish 
task goals  

● Explicitly states that choosing a different/ 
easier level to achieve task goals (golds or 
levels) (e.g., “We only solved one level. Should 
we move to an easier level?”, “Want to go to that 
level to get a gold?”)  

● Suggests redoing a level to achieve a gold (e.g., 
“But we only got silver. How can we get gold?”)  

● Suggests using fewer objects (e.g., “Restart. 
You have drawn so many things”) 

13. Tries to quickly save an 
almost successful attempt  

● When the ball almost touches the balloon, uses 
quick remedy solutions (e.g., “Click the ball, 
click the ball!”) 

Maintaining team function 
14. Asks others for suggestions  ● Asks others for possible ideas to facilitate 

collaboration. (Those are general questions for 
others to state their ideas/solutions, usually at 
the beginning of a level or when they are 
stuck) (e.g., “What do you think?”, “How do we 
do that?”, “I don’t know what to do”.)  

● Asks the group to choose between two 
previously discussed ideas. 

15. Compliments or encourages 
others  

● Shows support for one another’s ideas/ 
solutions (e.g., “Let’s try it and see”, “That’s a 
good idea”, “perfect!”, “Yay, great job!”, “Yay 
we did/made it”, “we are almost there”)  

● Encourages others after a solution is 
implemented (e.g., “Aww, we are so close!” 
“Ah, almost (there)!”)  

● Empathizes with others (e.g., “yeah, it’s hard 
to draw”) 

16. Initiates off-topic 
conversation (R)  

● Talks about anything unrelated to the task at 
hand or the challenge environment (e.g., “Is it 
cold in here?”, “I’m so tired”, “have you ever 
played XX game?”) 

17. Joins in off-topic 
conversation (R)  

● Engages with another person’s off-topic 
conversation.  

● Simply acknowledging the other person 
(“Yeah”, “uh-huh”) doesn’t count. 

18. Provides instructional 
support  

● Provides instructions to the controlling player 
on how to implement a solution (e.g., “Start 
drawing here”, “You’ll make a hook shape”)  

● Code for each individual instructional step.  
● Double code if a player provides instructions 

and proposes a new solution at the same time.  
● Do not code utterances like “just make a 

hook”. 
19. Apologizes for one’s 

mistakes  
● Apologizes after a suggested solution failed (e. 

g., “My bad. It didn’t work.”, “Oops, I missed 
it”)  

● Apologizes after accidently interrupting others 
(e.g., “Sorry, go ahead”, “sorry for 
interrupting. What were you saying?”)  

● Apologizes for bad drawing (e.g., “Sorry, my 
drawing is bad”, “sorry, I’m too clumsy”)  
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coding to understand the context of the utterance as well as the group 
dynamics. Coders did not know the level attempt results—i.e., solved or 
unsolved—until they viewed the end of the video. 

Table 3 below provides a sample exchange among participants along 
with codes (assigned indicators), and Fig. 3 shows a screenshot of the 
game level that generated the sample exchange. In this situation, the 
three students just started the level and were discussing how to solve it. 
As shown in Table 3, one student (PA) pointed out that timing was a 
critical element to solving the level, so that was coded as suggesting an 
appropriate idea although much more had to occur to yield a solution. 
Another student (PC) added onto PA’s idea and emphasized that they 
needed to drop a weight to hit the lever at the right time. All the players 
started to engage in a conversation to come up with a solution plan. 
Then they drew objects on the screen to execute their solution plan, as 
shown in the screenshot to the right in Fig. 3. After about 7 min, they 
could not solve this level so they quit the level and moved on to another 
one. 

Training and interrater reliability. Three human coders received 
two rounds of training from the first author. In each round of training, 
the three coders coded three different level attempts randomly selected 
from different teams. We adopted two indices of interrater reliability: 
Gwet’s AC11 and percentage agreement among the three coders. After 
the second round of training, Gwet’s AC1 values across indicators 
ranged from 0.91 to 1.00 and the percentage agreement was high 
(0.89–1.00) for all indicators. 

Next, we randomly selected nine level attempts (i.e., three level at-
tempts for each round) that all three coders individually coded. The 
purpose was to ensure the quality of coding. We assessed interrater 
reliability after each round and the coders discussed the indicators with 
low (<0.90) reliability indices prior to the next round. Gwet’s AC1 
values for the three rounds across indicators were 0.91–1.00, 0.84–1.00, 
and 0.93–1.00 with corresponding percentage agreements of 0.89–1.00, 
0.80–1.00, and 0.90–1.00. Because the coders maintained good inter-
rater reliability (0.85–1) in the quality check, they proceeded with in-
dividual coding a total of 209 randomly-selected level attempts (see 
below). The coders followed the same coding schedule (e.g., code X 
number of level attempts within Y number of days). 

Level matching. Because the nature of the collaborative interaction 
(e.g., what is spoken, game-play dynamics) is largely determined by 
unique game levels, we sought to compare CPS behaviors across teams 
who achieved different in-game performance outcomes (i.e., gold, silver, 
or no coin) within the same level. We used a quasi-experimental design 

procedure—matching—to isolate the effect of CPS behaviors on CPS 
outcomes after accounting for pertinent covariates detailed below. To do 
so, we generated matched sets of level attempts, such that each level 
attempt in the set had a different in-game outcome (i.e., gold, silver, or 
no coin). 

Level attempts were segmented from the Physics Playground logs, 
which recorded when a team entered a level, earned a coin, exited 
without earning a coin, or reentered a level. An attempt began when the 
team entered a level and ended when they solved the level, began a 
different level, or time ran out in the block. Note that a team could enter 
the same level multiple times in one block. However, if another level was 
visited in between these visits, they were considered separate attempts. 
In total, we segmented 1164 level attempts (27% gold, 29% silver, and 
44% no coin) from the data. 

Prior to matching, we checked all the level attempt durations in 
seconds. Then we removed level attempts (n = 356, 31% of total) that 
were less than 60 s since these largely reflected cases where teams were 
investigating a level ostensibly to decide if they wanted to attempt it, 
resulting in 808 level attempts for matching. 

Solution rates significantly differed for the two blocks with exclusive 
Energy can Transfer (EcT) (18% successful levels; 7% with gold trophies 
out of all the attempts) and Properties of Torque (PoT) (63% successful 
with 40% gold out of all the attempts) levels, two-tailed paired-samples, 
t(88) = 12.95, p < .001 (this analysis only included teams with complete 
log data). Because of the lower success rate for EcT, we coded its CPS 
performance as a binary paired outcome (i.e., coin [gold or silver] or no 
coin) for matching to ensure a sufficient number of matches. Success was 
coded as a triplet (silver, gold, no coin) for PoT and for the warmup 
levels (average completion rates of 34%; 10% gold). 

Next, we used the bmatch function in the designmatch (Zubizarreta, 
Kilcioglu, & Vielma, 2018) R package to form matched triplets (i.e., 
gold, silver, or no coin) or pairs (i.e., coin or no coin) of level attempts. 
Matching was done separately for each of the three blocks and was based 
on the following five covariates. The four categorical covariates were 
school, level identifier, manipulation (i.e., gold coins vs. solve many 
levels), and block number (first or second) for the experimental blocks. 
One continuous covariate was the duration of the level attempt, and we 
constrained the level attempt duration (in seconds) to be at most 0.25 
standard deviations of the mean duration of all the level attempts. 

In total, we formed 324 level attempt matches, including 33 Warmup 
and 29 PoT triplets (gold, silver, no coin for both), and 69 EcT pairs (coin 
or no coin) from our candidate set of 808 level attempts. Human coding 
all the level attempts would be very time-consuming and labor- 
intensive. Based on available coding resources, we randomly sampled 
a subset of 209 matches for analysis. These included 22 Warmup triplets 
(i.e., 66 level attempts), 34 EcT pairs (i.e., 68 level attempts), and 25 PoT 
triplets (i.e., 75 level attempts). A total of 47, 49, and 54 unique teams 
were included in the matched pairs/triplets for warmup, EcT, and PoT, 
respectively (corresponding to 141, 147, and 162 participants). One EcT 
pair was not coded because the video recording was missing. 

For the subset of 209 level attempts, we assessed the success of our 
matches across the pertinent covariates (Appendix A). Matches were 
considered successful if covariates were similar across our outcome 
groups (coins in this case), which was indeed the case for school, 
manipulation, and block, which were the same within a matched pair or 
triplet. The differences in duration (up to 77 s – Appendix A) were most 
pronounced for the warmup levels where level attempts resulting in 
silver coins required the least amount of time and unsuccessful attempts 
taking the most time. We included duration as a covariate in the sub-
sequent models to control for these differences. 

We also compared average team physics pretest scores (range from 
0 to 10), which served as a proxy for prior knowledge (Appendix A). 
Average team pretest scores were similar across coin type with a 
maximum difference of less than 1 point. We did not include pretest 
scores as a covariate in the matching process because it is a person-level 
variable (matching was done at the team level) and prior work found no 

Table 3 
A sample exchange among participants with associated indicators.  

Participant Transcripts Associated indicators 

PA We gotta time something. Suggests appropriate 
ideas 

PC Yeah you gonna have to drop something 
at the right time. It’s like … 

Confirms understanding 

PB Yeah the exact same time. Confirms understanding; 
interrupts others 

PA Oh, yeah, right, I guess … Responds to others’ 
questions/ideas 

PB Or you could do something like the last 
time. Make the left one, uh, put like a 
weight on it so it evens it out. 

Suggests appropriate 
ideas 
Provides reasons to 
support a solution 

PA So like it evens it out. Confirms understanding  

1 Gwet’s AC1 provides consistent estimates of interrater reliability regardless 
of sample sizes and does not assume independence between raters. It is 
particularly useful in cases where agreement is high, which is a known problem 
for other metrics like Cohen’s kappa (Gwet, 2008). 
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relationship between pretest scores and task performance (Stewart, 
Amon, Duran, & D’Mello, 2020). 

3.6. Analysis 

Our goal was to investigate how CPS behaviors predicted in-game 
performance within the matched levels. In total, the three coders 
coded 16,446 utterances from the 209 levels, after excluding duplicated 
utterances (as rated by human coders). We removed the last 10% of 
utterances from each level attempt out of a concern that the language/ 
indicators might have focused on the success or failure of the outcome 
rather than the problem-solving process. This removal resulted in 
14,689 utterances available for our analyses. These data were analyzed 
at the indicator- and pattern-level as noted below. See Appendix B for a 
sample of the dataset. 

Indicator-level analysis. The first analysis was an utterance-level, 
multilevel ordinal regression with problem solving outcome (no coin 
[0] vs. silver coin [1] vs. gold coin [2]) as the dependent variable and 
level attempt match identifier (match ID) as the grouping factor (and 
random intercept). Note that although EcT levels were coded as a binary 
outcome (coin or no-coin) for level matching (see above), we reverted to 
their original trichotomous codes for the models. We simultaneously 
included the utterance-level counts of all indicators as our predictor 
variables, thereby addressing the influence of each indicator relative to 
the others. 

We also controlled for the following six variables (covariates). The 
first covariate was the relative utterance index (i.e., the relative position 
of the utterance within the level). This was determined by dividing the 
index of the current utterance by the total number of utterances within 
the level attempt. The position of an utterance matters. That is, utter-
ances at the beginning of a level attempt tend to relate to figuring out the 
problem situation and brainstorming solutions, whereas those in the 
middle of problem solving tend to relate to solution implementation and 
refinement. The second covariate was concept, with two levels for EcT 
(set as the reference group) and PoT. We added this covariate because 
success rates differed between the two concepts (i.e., 19% for EcT vs. 
63% for PoT). For the third covariate, level duration, we computed the 
time spent per level attempt by subtracting the start time from the end 
time and z-scoring it across level attempts. This was included because 
longer levels were generally associated with unsuccessful attempts and 
perfect matching could not be achieved (Appendix A). The fourth co-
variate, verbosity, was computed by first obtaining the length (i.e., the 
total number of words spoken) of each utterance, and then computing z- 
scores across all utterances. We added this covariate to ascertain the 
incremental predictive validity of the CPS codes over the simple volume 
of language production. The fifth covariate, relative start time, was 
recorded when participants engaged with the level within the 15-min 
block. This covariate was also z-scored across all utterances. This was 

included because it encodes expertise effects, fatigue effects, and time 
pressure. The last covariate was manipulation, with three levels (none, 
solve as many levels, and maximize gold coins [reference group]). 

Pattern Analysis. For this analysis, we identified frequently occur-
ring clusters of indicators (called patterns) and used these as predictors. 
Specifically, we extracted patterns from the indicator sequences using a 
sliding window of five utterances (i.e., utterances 1–5 formed the first 
window and utterances 2–6 formed the second one). On average, the five 
utterances corresponded to 15.1 s (SD = 8.61) of discourse, which we 
deemed sufficient for our purposes. For each five-utterance window, we 
extracted the set of indicators that occurred therein and designated it as 
a pattern, ignoring duplicated indicators and occurrence order. For 
example, the five utterances coded with the indicators—[1] suggests 
appropriate ideas, [2] responds to others’ questions/ideas, [3] confirms 
understanding, [4] responds to others’ questions/ideas, and [5] responds to 
others’ questions/ideas would form the following pattern: suggests 
appropriate ideas + confirms understanding + responds to others’ questions/ 
ideas. Whereas this method ignores temporal ordering of utterances, we 
chose this approach because we were interested in indicator co- 
occurrences and not specific sequences. The approach also yields more 
general patterns and reduces the number of candidate patterns. 

Applying the sliding window to the 14,689 utterances across 209 
levels resulted in 13,853 five-utterances windows (14,689–4*209 to 
account for the ending boundaries). We identified 1361 distinct patterns 
with a range of 0–7 indicators per pattern (M = 3; SD = 1). We focused 
on the three-indicator patterns (i.e., the mean) as they were sufficiently 
frequent and provided an opportunity to capture utterances from the 
three participants who were engaged in the trialogue. We included a 
subset of these patterns (details below) as predictors in the mixed-effects 
ordinal regression model along with the six covariates mentioned above. 

4. Results 

Table 4 shows proportional occurrence of indicators, computed by 
summing the counts for each indicator across all utterances and dividing 
by the total number of utterances (i.e., 14,689). The table is sorted in 
decreasing order of frequency. The most frequently (10.7%) occurring 
indicator was responds to other’s ideas/questions, which includes short 
responses like “yes/no,” “I agree,” and “that makes sense.” The second 
(10%) most frequent indicator, confirms understanding, showed that team 
members checked their understanding by asking questions or para-
phrasing. Another frequent indicator (8.5%) was provides instructional 
support, which occurred when the player who controlled the mouse was 
unsure of what to draw on the screen, and the other players provided 
step-by-step instructions. Interestingly, the occurrence of suggests 
appropriate ideas (6.3%) was only slightly higher than suggests inappro-
priate ideas (5.2%); collectively suggesting ideas was frequent (10.7%). 
Team members also tended to compliment or encourage each other (6%) 

Fig. 3. A screenshot of the game level the team was trying to solve in Table 3 exchange.  
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and were generally polite (the indicator, criticizes or makes fun of others, 
occurred only three times). 

When mapped to the facet-level (See Table 2), the majority of ut-
terances involved shared knowledge construction (29.1%), followed by 
negotiation/coordination (19.5%), and maintaining team function 
(17%), suggesting that the team was quite focused on problem solving. 

We also computed the proportional occurrence of all three-indicator 
patterns. We used binary labels to indicate the pattern that occurred 
within each window (i.e., if a pattern occurred within a window, it was 
labeled as 1; otherwise, 0). The frequency was calculated by dividing the 
sum of occurrence of each pattern by the total number of windows (i.e., 
13,853). 

We further analyzed the top three (out of 347) frequently-occurring 
three-indicator patterns as these occurred in approximately 1% of the 
windows: [P1] confirms understanding + responds to others’ questions/ 
ideas + provides instructional support (2.82%); [P2] suggests appropriate 
ideas + confirms understanding + responds to others’ questions/ideas 
(0.95%); and [P3] suggests inappropriate ideas + confirms understanding +
responds to others’ questions/ideas (0.86%). [P1] suggests the team 
members were mutually checking each other’s understanding, 
responding to others’ statements and/or questions, and offering help 
when needed. [P2] and [P3] shows that when someone proposes an idea 
(either appropriate or inappropriate), others listen attentively and 
respond, such as acknowledging, asking questions, and paraphrasing. 

4.1. CPS indicators to predict in-game performance 

We removed the “Criticizes, makes fun of others” indicator from 
model since it rarely occurred (M = 0.0002). All variables in our model 
had VIFs lower than 2, so we concluded that there were no multi-
collinearity issues. 

Table 5 shows the model results, 95% confidence intervals, and p 
values, computed based on the z-distribution. Significant odds ratios 
(ORs) greater than 1 indicate a positive predictor; whereas significant 
ORs less than 1 indicate a negative indicator. The OR itself is an effect 
size metric. For example, the OR for “suggests appropriate ideas” was 
1.19, indicating that a one unit increase in this indicator makes it 1.19 

times more likely to result in a positive outcome. The table also includes 
the following random effects: within match ID variance (σ2), between 
match ID variance (τ00), and the intra-class correlation coefficient (ICC, 
measuring the proportion of variance in the outcome explained by the 
nesting factor match ID). Finally, the marginal R2 value indicates the 
proportion of variance explained by the fixed effects in the statistical 
model, while the conditional R2 shows the proportion of variance 
explained by the fixed and mixed effects. 

We found that 6 of the 18 indicators significantly predicted the CPS 
outcome. As expected, suggests appropriate ideas, compliments or encour-
ages others, responds to others’ ideas/questions, and discusses the results 
positively predicted CPS outcomes. Additionally, suggests inappropriate 
ideas and brings up giving up the challenge negatively predicted the 
outcome. Two indicators, confirms understanding and asks for suggestions 
were marginally significant predictors. 

Four of our indicators provide some indication of the team’s progress 
in arriving at a solution (i.e., suggests appropriate/inappropriate ideas, 
brings up giving up the challenge, tries to quickly save almost successful at-
tempts). And even though these indicators do not directly code the CPS 
outcome and coders were blind to the outcome (until coding for a level 
was complete), we ran an additional model to address possible con-
founding effects that the ratings were biased by these indicators. Spe-
cifically, we removed the brings up giving up the challenge and tries to 
quickly save almost successful attempts indicator. We also combined sug-
gests appropriate ideas and suggests inappropriate ideas into a new suggests 
potential ideas indicator to test whether the quality of ideas matters or if 
quantity is sufficient. The results are shown in Model 2 (Table 5). 

Indeed, we found that the combined indicator suggests potential ideas 
did not predict the outcome. This shows that the effects of suggesting 
appropriate and inappropriate ideas canceled out when they were 

Table 4 
Descriptive statistics of utterances (n = 14,689) analyzed in the mixed-effect 
models.  

Indicators Mean SD Frequency 
Range 

[NEGO] Responds to others’ ideas/questions 0.107 0.309 0–1 
[CONST] Confirms understanding 0.100 0.304 0–4 
[MAINTAIN] Provides instructional support 0.085 0.297 0–3 
[CONST] Suggests appropriate ideas 0.063 0.261 0–3 
[MAINTAIN] Compliments or encourages 

others 
0.060 0.238 0–1 

[CONST] Talks about challenge situation 0.057 0.232 0–2 
[CONST] Suggests inappropriate ideas (R) 0.052 0.235 0–3 
[NEGO] Provide reasons to support a solution 0.036 0.190 0–3 
[CONST] Interrupts others (R) 0.029 0.168 0–1 
[NEGO] Discusses the results 0.027 0.161 0–2 
[NEGO] Questions/Corrects others’ mistakes 0.022 0.146 0–2 
[MAINTAIN] Asks for suggestions 0.011 0.238 0–1 
[MAINTAIN] Apologizes for one’s mistakes 0.007 0.083 0–1 
[MAINTAIN] Initiative off-topic conversation 

(R) 
0.004 0.059 0–1 

[MAINTAIN] Joins off-topic conversation (R) 0.004 0.059 0–1 
[NEGO] Strategizes to achieve task goals 0.003 0.058 0–1 
[NEGO] Brings up giving up the challenge (R) 0.003 0.056 0–1 
[NEGO] Tries to quickly save almost 

successful attempts 
0.001 0.036 0–1 

[NEGO] Criticizes, makes fun of others (R) 0.000 0.014 0–1 
Facets 
Constructing shared knowledge (CONST) 0.291 0.507 0–4 
Negotiation/coordination (NEGO) 0.195 0.401 0–3 
Maintaining team function (MAINTAIN) 0.170 0.394 0–3  

Table 5 
Ordinal Mixed Effects Model: Using Specific Indicators to Predict No Coin vs. 
Silver vs. Gold [Level Attempts].   

Model 1 Model 2 

Odds 
Ratio 

p Odds 
Ratio 

p 

Predictors 
Talks about challenge situation 0.97 0.526 0.98 0.696 
Suggests appropriate ideas 1.19 0.001 – – 
Suggests inappropriate ideas 0.86 0.002 – – 
Suggests potential ideas – – 1.05 0.148 
Confirms understanding 1.07 0.059 1.08 0.031 
Interrupts others 1.08 0.192 1.08 0.200 
Provides reasons to support a solution 1.03 0.562 1.05 0.367 
Questions/corrects others’ mistakes 1.06 0.396 1.08 0.279 
Responds to others’ ideas/questions 1.08 0.033 1.08 0.022 
Discusses results 1.15 0.025 1.16 0.018 
Strategizes to achieve task goals 0.94 0.713 0.95 0.783 
Brings up giving up the challenge 0.43 0.001 – – 
Tries to quickly save almost successful 

attempts 
1.18 0.523 – – 

Asks for suggestions 0.82 0.056 0.83 0.071 
Compliments or encourages others 1.13 0.004 1.14 0.002 
Initiates off-topic conversation 0.97 0.880 0.98 0.923 
Joins off-topic conversation 1.07 0.699 1.08 0.664 
Provides instructional support 1.01 0.860 1.02 0.680 
Apologizes for one’s mistakes 0.92 0.517 0.93 0.563 
Covariates 
Relative Utterance Index 1.00 0.926 0.99 0.887 
Concept [PoT] 2.93 0.001 2.91 0.001 
Duration [Z Score] 0.48 0.001 0.48 0.001 
Verbosity [Z Score] 0.99 0.665 0.99 0.345 
Relative Start Time [Z Score] 0.46 0.001 0.46 0.001 
Manipulation [Warmup] 1.87 0.003 1.87 0.003 
Manipulation [Levels] 0.86 0.454 0.86 0.460 
Random effects 
σ2 1.00 1.00 
τ00 matchID 0.57 0.57 
ICC 0.36 0.36 
Marginal R2/Conditional R2 0.36/0.59 0.36/0.59  
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combined, as suggests appropriate ideas positively influenced the outcome 
whereas suggests inappropriate ideas negatively affected the outcome. 
However, suggesting any kind of ideas still mattered to some degree, as 
indicated by the odds ratio larger than 1. Four indicators (bold font in 
the table) were significant predictors in both models. They were: re-
sponds to others ideas/questions, compliments or encourages others and 
discusses results. Confirms understanding was marginally significant in 
Model 1 and significant in Model 2. These might be essential behaviors 
for successful CPS outcomes. 

With respect to the covariates, as expected, PoT levels were much 
easier to solve than EcT levels, and the more time spent on a level, the 
less likely the team was at successfully solving the level. Relative start 
time was also inversely related to the outcome, suggesting that partici-
pants tended to solve levels at the earlier stages of gameplay within the 
block, perhaps when they were more refreshed. Verbosity and relative 
utterance index did not significantly predict the CPS outcome indicating 
that the content of the communication mattered more than the length of 
utterances. In terms of manipulation, the reference group was the ses-
sions with the goal of getting as many gold coins as possible (i.e., high- 
quality solutions), which did not differ from the other experimental 
condition (earn as many silver coins by solving as many levels as 
possible), presumably because this variable was used as a covariate in 
the matching. Unsurprisingly, both yielded lower outcomes than the 
easier warmup levels with no manipulations. 

The ICC value indicated that 40% of the variance in the in-game 
performance was explained by the matched sets of level attempts. 
Further, the fixed effects (i.e., the predictors and covariates) explained 
36% of the variance in the in-game performance (marginal R2), sug-
gesting that there are other variables that influence the in-game per-
formance in addition to the variables included in our model. The random 
and the fixed effects collectively explained about 59% of the variance in 
participants’ success in gameplay (conditional R2). 

4.2. Pattern analysis: CPS indicators to predict binary in-game 
performance 

In the pattern analysis, we built an ordinal regression model using 
the three frequently occurring three-indicator patterns to predict level 
success. In addition, we included six significant individual indicators 
from Model 1 to examine whether the patterns provide additional in-
formation and one additional indicator (provides instructional support) 
that was part of the patterns itself. Additionally, we included the same 
five covariates as in the indicator-level model (calculated using the five- 
utterance window). 

Model 3 (Table 6) shows that among the three most frequent pat-
terns, one significantly predicted the outcome (none vs. silver vs. gold) 
[P2] (i.e., suggests appropriate ideas + confirms understanding + responds 
to others’ questions/ideas): predicted the outcome whereas three indi-
vidual indicators were not significant. The discourse pattern [P3] (i.e., 
suggests inappropriate ideas + confirms understanding + responds to others’ 
questions/ideas) was not a significant predictor with respect to the type 
of coin earned, although suggests inappropriate ideas alone had predictive 
power. It appears that the negative impact of suggesting inappropriate 
ideas could be mitigated when other team members attempted to 
paraphrase or ask clarification questions and formed a conversation 
cycle to check and establish mutual understanding. Interestingly, non- 
significant individual indicators (suggests appropriate ideas, confirms un-
derstanding, and responds to others’ ideas/questions) formed a constructive 
communication pattern [P2] that significantly predicted the CPS 
outcome. Interestingly, the most frequent pattern ([P1], confirms un-
derstanding + responds to others’ ideas/questions + provides instructional 
support) was not a significant predictor in this model. 

Similar to the indicator-level analysis, we re-ran the pattern analysis 
by removing brings up giving up the challenge and combining the two in-
dicators – suggests appropriate ideas and suggests inappropriate ideas into a 
new pattern suggests potential ideas. These adjustments increased the 

Table 6 
Ordinal Mixed Effects Model: Using Patterns to Predict No Coin vs. Silver vs. 
Gold [Level Attempts].   

Model 3  Model 4 

Odds 
Ratio 

p Odds 
Ratio 

p 

Predictors   Predictors   
[P1] confirms 

understanding +
responds to others’ 
ideas/questions +
provides 
instructional 
support 

0.92 0.207 [P1] confirms 
understanding +
responds to others’ 
ideas/questions +
provides 
instructional support 

0.92 0.201 

[P2] suggests 
appropriate ideas 
+ confirms 
understanding +
responds to others’ 
questions/ideas 

1.62 0.001 [P2] suggests 
potential ideas +
confirms 
understanding +
responds to others’ 
ideas/questions 

1.19 0.024 

[P3] suggests 
inappropriate 
ideas + confirms 
understanding +
responds to others’ 
questions/ideas 

0.82 0.096 [P3] suggests 
potential ideas +
confirms 
understanding +
provides 
instructional support 

0.73 0.004    

[P4] suggests 
potential ideas +
provides reasons to 
support an idea +
responds to others’ 
questions/ideas 

0.89 0.283    

[P5] suggests 
potential ideas +
responds to others’ 
questions/ideas +
compliments or 
encourages others 

1.19 0.125 

Confirms 
understanding 

0.88 0.255    

Responds to others’ 
ideas/questions 

1.16 0.145 Confirms 
understanding 

0.89 0.266 

Provides 
instructional 
support 

1.07 0.456 Responds to others’ 
ideas/questions 

1.16 0.142 

Suggests appropriate 
ideas 

1.16 0.107 Provides reasons to 
support a solution 

0.79 0.496 

Suggests 
inappropriate 
ideas 

0.54 0.001 Provides 
instructional support 

1.06 0.469 

Compliments or 
encourages others 

1.10 0.162 Compliments or 
encourages others 

1.10 0.153 

Discusses results 1.25 0.020 Suggests potential 
ideas 

0.81 0.001 

Brings giving up the 
challenge 

0.38 0.016 Discusses results 1.25 0.021 

Covariates   Covariates   
Relative Utterance 

Index 
1.00 0.903 Relative Utterance 

Index 
0.99 0.875 

Concept [PoT] 3.00 0.001 Concept [PoT] 2.99 0.001 
Duration [Z Score] 0.48 0.001 Duration [Z Score] 0.48 0.001 
Verbosity [Z Score] 1.00 0.893 Verbosity [Z Score] 1.00 0.686 
Relative Start Time 

[Z Score] 
0.47 0.001 Relative Start Time 

[Z Score] 
0.47 0.001 

Manipulation 
[Warmup] 

1.88 0.004 Manipulation 
[Warmup] 

1.88 0.004 

Manipulation 
[Levels] 

0.86 0.470 Manipulation 
[Levels] 

0.86 0.465 

Random effects   Random effects   
σ2 1.00 σ2 1.00 
τ00 matchID 0.60 τ00 matchID 0.60 
ICC 0.37 ICC 0.37 
Marginal R2/ 

Conditional R2 
0.35/0.60 Marginal R2/ 

Conditional R2 
0.35/0.60 

Note: P is short for “Pattern”, so P1 means Pattern 1. 
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number of frequent patterns (roughly 1% or greater occurrence) to five: 
[P1; 2.82%] confirms understanding + responds to others’ ideas/questions 
+ provides instructional support, [P2; 1.88%] suggests potential ideas +
confirms understanding + responds to others’ ideas/questions, [P3; 1.08%] 
suggests potential ideas + confirms understanding + provides instructional 
support, [P4; 0.99%] suggests potential ideas + provides reasons to support 
an idea + responds to others’ questions/ideas, and [P5; 0.84%] suggests 
potential ideas + responds to others’ questions/ideas + compliments or en-
courages others. 

These five patterns were included in the new model along with seven 
relevant individual indicators (Model 4, Table 6). As before, discusses 
results positively predicted the outcome as it suggests metacognitive 
reflection. We were initially puzzled to find that suggesting potential 
ideas was negatively related to CPS outcomes. However, it might be the 
case that potential inappropriate ideas had more of an effect than 
appropriate ideas (see Model 3). The results were more illuminating 
when potential ideas were examined within the context of the two sig-
nificant patterns [P2] and [P3], which were significant positive and 
negative predictors, respectively. Both patterns showed the importance 
of building on a potential idea by confirming understanding, but 
responding when clarifications were needed [P2] was productive 
whereas simply providing instructional support [P3] was not. Further, 
the other patterns accompanying this indicator [P4] and [P5] were not 
significant predictors of CPS outcomes. In summary, these findings 
suggest that team member interactions add another layer contributing to 
outcome quality. That is, when ideas are suggested, team members 
should build on them with constructive and responsive communications 
to achieve high quality outcomes. 

5. Discussion 

We investigated how CPS skills influence objective CPS outcomes in 
a game-based collaborative learning environment. Our main findings 
along with directions for future work are summarized below. 

5.1. Main findings 

We identified the relationships between CPS measures (at the spe-
cific indicator level and pattern level) and in-game performance when 
triads engaged in CPS using a physics game. The indicator-level model 
revealed that conversations that involved talking about appropriate 
ideas contributed to desirable outcomes whereas discussing inappro-
priate ideas tended to divert the team to a nonproductive direction. 
Simply suggesting ideas, however, was not a significant predictor, which 
is unsurprising since successful CPS entails both collaboration and 
problem-solving skills. The problem-solving part of CPS requires team 
members to have basic background knowledge so that appropriate so-
lution plans can be devised. It is possible that a team persists on applying 
an inappropriate idea which can lead to unsuccessful results, particu-
larly when no one has sufficient knowledge to rectify the situation. But 
knowledge is itself insufficient in that a knowledgeable team member 
may not be able to apply their knowledge if they are shy or if the other 
members are too dominant. Indeed, CPS entails dynamic and construc-
tive interactions among team members in addition to individual 
contributions. 

In addition to suggesting ideas, other indicators were identified as 
essential for successful CPS task performance. Complimenting and 
encouraging fellow team members helps to create a positive collabora-
tive environment, which in turn stimulates good quality collaboration. 
Additionally, discussing results from implemented solutions benefits 
performance. That is, monitoring and reflecting on the results from a 
recent solution attempt might encourage team members to refine their 
solutions (if warranted) (Andrews-Todd & Forsyth, 2020; Care et al., 
2016). Additionally, confirming understanding and responding to 
others’ ideas/questions also predicted high-quality level solutions. This 
suggests that checking in with team members is crucial to establishing 

common ground and generating executable solutions. Simply acknowl-
edging others’ ideas and being responsive could facilitate negotiation 
processes that are needed for a successful outcome. This is consistent 
with the literature on the importance of reciprocal exchanges of 
communication in collaboration contexts (e.g., Barron, 2000; Hesse 
et al., 2015). 

The pattern analysis revealed additional interactive patterns that 
contributed to team outcomes. First, team members should frequently 
check each other’s understanding and respond to others’ statements or 
questions, to ensure mutual understanding and establish common 
ground. From a conversation perspective, the pattern analysis indicates 
multiple rounds of turn taking is needed to establish a shared under-
standing. If someone suggests an idea, then others should follow up and 
discuss the feasibility of the idea, instead of simply doing what was 
instructed. Thus, multiple conversational turn taking helps develop 
meaning among team members. It is also a sign of active participation, 
not passive acceptance of a suggested idea. 

Mapping our indicator-level results to the CPS facets (Table 7) in-
dicates that aspects of all three CPS facets were predictive of the 
outcome. CPS requires each individual to share knowledge, skills, and 
resources, monitor team progress, and maintain a functional team 
environment (Andrews-Todd & Forsyth, 2020; OECD, 2017). This is 
done by sharing one’s expertise, coordinating with others, and keeping 
the team spirit positive (via complements). It further reinforces that 
cognitive and social skills are interconnected in CPS as demonstrated by 
the fact that each identified patterns involve the combination of social 
(e.g., responding to others and asking clarification questions) and 
cognitive (e.g., contributing ideas and talking about tasks) elements. In 
short, our findings demonstrate that CPS is a socio-cognitive construct 
(Dowell et al., 2020), and separating the problem solving and collabo-
ration aspects may not be desirable for CPS assessment. 

5.2. Limitations & future work 

Our results should be interpreted in light of some limitations. Our 
study was conducted in a laboratory setting which may not mimic the 
real-world CPS activity environment. The CPS task used in our study 
related to learning physics through gameplay. As a result, some aspects 
of the coding scheme may not fully capture CPS behaviors that may 
occur in ill-structured CPS problems. Related to that, different features 
of different games may influence how people behave during CPS tasks. 
Thus, analyzing and comparing different game structures in CPS envi-
ronments can be informative for future studies. Another limitation re-
lates to the simplicity of our pattern analysis method in this initial 
investigation. We applied five-utterance sliding windows in our analysis 
to see how co-occurring of indicators would influence CPS performance 
outcomes. Even though the coders were not informed of the perfor-
mance outcome in advance, some level of knowledge was needed for 
judging whether an idea was appropriate vs. inappropriate to solve a 
particular game level. Lastly, the present study was exploratory in terms 
of understanding the relationship between CPS behaviors and 

Table 7 
Mapping of CPS indicators/patterns to facets for main models (Models 1 and 3).  

Facet Indicator/Pattern 

Constructing shared knowledge Suggests appropriate ideas (positive) 
Suggests inappropriate ideas (negative) 
Confirms understanding (marginally positive) 

Negotiation/coordination Responds to others’ ideas/questions (positive) 
Discusses results (positive) 
Brings up giving up the challenge (negative) 

Maintaining team function Compliments or encourages others (positive) 
Asks for suggestions (marginally negative) 

Constructing shared knowledge +
Negotiation/coordination 

[P2] suggests appropriate ideas + confirms 
understanding + responds to others’ 
questions/ideas  
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performance outcomes in triadic, spoken, and game-based learning en-
vironments. Although the CPS framework we used has been validated 
across multiple tasks (Sun et al., 2020) and we used an objective mea-
sure of performance, it is important to replicate our findings across 
multiple contexts. Whereas we do not expect that the same set of in-
dicators or patterns will be predictive of task performance in all con-
texts, as similar studies emerge, the field should be in a position to 
identify a set of generalizable CPS behaviors that underly performance 
outcomes. 

Our results also indicate several potential areas of future work. We 
suggest investigating the non-significant indicators in the models we 
tested. For example, provides instructional support frequently occurred 
during students’ communications, but it did not directly relate to the 
outcome quality. Too much instructional support from other team 
members may lead to passive participation of the person controlling the 
interface, or to unsolved levels if the instructional support involves in 
inappropriate idea. Another indicator—interrupts others—might be seen 
as a double-edge sword. That is, someone could interrupt due to being 
aggressive and thus impede the CPS processes (Chiu, 2008). But some-
one could also interrupt to seek clarification, rectify a misunderstanding, 
or share their excitement (Roschelle & Teasley, 1995). It is also possible 
that CPS indicators differentially contribute to other CPS outcomes (e.g., 
subjective perceptions of the interaction), which was not examined in 
the current study. 

Another possible reason that not all indicators related to our per-
formance outcome is that our experimental design did not provide suf-
ficient time for some of the indicator effects to unfold. The literature 
does not provide empirical evidence regarding how long it takes to form 
an effective and efficient team in CPS environments. Our design of three 
15-min blocks may have been inadequate for triads to fully demonstrate 
their CPS skills. To this point, we found that teams were less likely to 
succeed in levels as they were approaching the end of a block. Moreover, 
the triads in our design switched roles in each block (i.e., controller vs. 
contributors), which could affect team dynamics. Future studies could 
also investigate the longitudinal development of CPS skills among team 
members across days, weeks, or even months. Furthermore, due to the 
complexity of the CPS construct, skill development might not be linear, 
so future studies could focus on the dynamics of CPS skills development. 

In general, additional research is needed to get a comprehensive 
understanding of the relationship between specific indicators and sub-
sequent CPS outcomes (Hao et al., 2019). Such an understanding can 
benefit tailored CPS training (Andrews-Todd & Forsyth, 2020). For 
instance, based on the results from the current study with the goal to 
improve CPS task performance, training that emphasizes the significant 
indicators and patterns listed in Tables 5 and 6 would be impactful. If the 
goal was to enhance content knowledge or subjective perceptions, then 
other indicators may be focal. 

One other issue to consider is the time-consuming nature of human 
coding of CPS behaviors, which motivated us to examine a subset of the 
video recordings. With advances in artificial intelligence, specifically 
automatic speech recognition and natural language processing (Blan-
chard et al., 2015; Devlin, Chang, Lee, & Toutanova, 2019; Le Cun, 
Bengio, & Hinton, 2015), the data generated from human coding could 
be further utilized towards automated coding of CPS indicators. This 

would permit testing of the prediction accuracy of various AI techniques 
using human coding data (e.g., Stewart et al., 2020; Hao et al., 2019; von 
Davier et al., 2017). In the same vein, automated assessment of CPS in 
human-human interactions can enable timely feedback. For example, 
when real-time assessment detects that group members are ignoring 
each other, then an appropriate intervention/message could be 
deployed to facilitate communication among team members. Future 
research should investigate the effectiveness of timely feedback on 
participants’ CPS skill development. In addition, researchers could 
consider the best way to report CPS skills to stakeholders (e.g., teachers, 
employers, and team members). Simply presenting current CPS facet 
scores is likely inadequate. Instead of showing scores, perhaps a progress 
bar could be displayed, along with descriptions related to particular 
strengths and weaknesses – as well as ways to improve certain CPS skills. 
Moreover, researchers should examine whether to provide feedback to 
the team or to individual team members. 

6. Conclusions 

Our study examined how CPS behaviors and interactions affected 
performance while triads engaged in CPS tasks in a game-based learning 
environment. We found associations among fine-grained indicators as 
well as patterns of co-occurring indicators and CPS success. The findings 
emphasized that CPS requires individual contributions along with 
constructive interactions. Also, the cognitive and social aspects are in-
tegral to CPS. Existing CPS models (e.g., PISA and ATC21S) clearly 
distinguish the two aspects, which tend to deemphasize the intercon-
nectedness between social and cognitive skills. The findings can inform 
intervention designs to improve students’ CPS skills in future research. 
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Appendix A 

Tables for Level-matching Statistics. 
Level-matching: Distribution of the 209 level attempts across schools, experimental blocks, and goal manipulation.  
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Warmup PoT EcT 

Gold Silver No Coin Gold Silver No Coin Coin No Coin 

School1 11 11 11 9 9 9 20 20 
School2 11 11 11 16 16 16 15 15 
Block1 – – – 8 8 8 13 13 
Block2 – – – 17 17 17 22 22 
Levels – – – 11 11 11 13 13 
Golds – – – 14 14 14 22 22  

Means (and Standard Deviations) of pretest score and duration of the 209 level attempts across coin types.    

Gold Silver Coin No coin 

Average Team Pretest Score Warmup 6.2 (1.2) 6.3 (1.3) – 7.0 (1.2) 
PoT 6.5 (1.3) 6.9 (1.4) – 6.5 (1.4) 
EcT – – 6.7 (1.2) 6.9 (1.2) 

Level Duration Warmup 235.6 (152.4) 186.8 (119.0) – 263.4 (189.7) 
PoT 218.1 (129.2) 270.2 (210.8) – 215.7 (172.3) 
EcT – – 292.4 (175.8) 357.0 (257.8)  

Appendix B 

A Simplified Excerpt of the Dataset. 
This table shows a simplified excerpt of the major content included in the dataset, specifically, transcript information and associated indicators. For 

each transcribed utterance, the expert coders would label which indicator(s) occurred in the utterance. Each utterance can be coded to multiple 
indicators and an indicator can occur multiple times for one utterance.   

Partici-pant Start 
Time 

End time Transcript I1 I2 I3 … I19 duplicate 

PA 70.12 71.03 Utterance 1 0 2 1 … 0 0 
PC 71.33 73.4 Utterance 2 1 0 1 … 0 0 
PB 80.23 83.57 Utterance 3 0 1 0 … 1 0 
PC 82.58 83.33 Utterance 4 0 0 3 … 0 0 
PB 84.60 90.12 Utterance 5 2 1 0  0 0  

Appendix C 

All Measures in the Main Study.   

Home Measures Demographics Gender, age, major, GPA, etc  

Big-five personality (Brief) Gosling, Rentfrow, and Swann (2003)  
Leadership self-efficacy Hoyt and Blascovich (2010)  
Individual satisfaction with teamwork De la Torre-Ruiz, Ferron-Vilchez, and Ortiz-de-Mandojana (2014)  
Physics self-efficacy Lindstrøm and Sharma (2011)  
Physics pretest test (form X/Y) Developed by physics experts  
Intrinsic motivation inventory (IMI) for Physics Playground; IMI for Minecraft Deci and Ryan (1982)  
Minecraft tutorial check Researcher-developed items 

Lab Measures Valence/Arousal (for each 15-min block) Researcher-developed items  
Team collaborative problem solving quality (for each 15-min block) Researcher-developed items  
Inclusiveness and Team Norms (for each 15-min session) Gardner and Pierce (2016); Whitton and Fletcher (2014)  
Physics posttest (form X/Y) Developed by physics experts     
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