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Abstract

Cocreating meaning in collaboration is challenging. Success is often determined by people’s abilities
to coordinate their language to converge upon shared mental representations. Here we explore one set of
low-level linguistic behaviors, linguistic alignment, that both emerges from, and facilitates, outcomes
of high-level convergence. Linguistic alignment captures the ways people reuse, that is, “align to,”
the lexical, syntactic, and semantic forms of others’ utterances. Our focus is on the temporal change
of multi-level linguistic alignment, as well as how alignment is related to communicative outcomes
within a unique collaborative problem-solving paradigm. The primary task, situated within a virtual
educational video game, requires creative thinking between three people where the paths for possible
solutions are highly variable. We find that over time interactions are marked by decreasing lexical
and syntactic alignment, with a trade-off of increasing semantic alignment. However, greater seman-
tic alignment does not translate into better team performance. Overall, these findings provide greater
clarity on the role of linguistic coordination within complex and dynamic collaborative problem-
solving tasks.

Keywords: Linguistic alignment; Collaborative problem-solving; Interactive alignment; Dialog;
Virtual learning environments

1. Introduction

Conversation provides people the opportunities to create shared understandings of con-
cepts, assumptions, and expectations for whatever communication goals are at hand
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(Brennan & Clark, 1996; Clark, 1996; Clark & Brennan, 1991). But even when the goals
seem simple and the process easy (e.g., just shooting the breeze), verbal communication is still
challenging (Brennan, Galati, & Kuhlen, 2010). There are demands on individual memory,
perspective-taking, emotional regulation, and other cognitive skills (Galati, Dale, & Duran,
2019; Horton & Gerrig, 2005; Roche & Arnold, 2018), as well as challenges in dealing with
another who might not be as skilled or motivated to meet communication goals (Brennan
& Clark, 1996; Slocome et al., 2013). Such demands are only compounded in collaborative
problem-solving (CPS) situations, a type of real-world interaction that is becoming increas-
ingly common across workplaces and classrooms in the 21st century (Levy & Murnane, 2012;
Wüstenberg, Greiff, & Funke, 2012). In CPS interactions, multiple people must collaborate to
identify a solution path(s) to get to a goal state from a current state (i.e., to solve a problem).
This entails developing transactive knowledge structures that consist of situational and task-
appropriate strategies for solving nonroutine problems (Chen et al., 2020). Often, this goal
must be accomplished in contexts that involve a high degree of uncertainty, varied domain
knowledge, multiple solution paths, both optimal and suboptimal, and a constant updating of
task priorities and perspectives (Graesser et al., 2018). Communications in CPS are thus com-
plex, leading to the critical question of how to assess the quality of communication in CPS
interactions when outcomes are multidimensional (e.g., solving the problem, being pleased
with the level of teamwork) and varied.

In this study, we explore linguistic alignment behaviors that are critical for conversation and
establishing shared meaning, but in the novel context of triadic remote CPS. These behaviors
have been largely studied in association with various process models of dialogue, where the
primary outcome of communication is the convergence of mental representations between
conversational partners (Clark, 1992; Pickering & Garrod, 2004). This process is both sup-
ported by—and is a result of—the alignment of linguistic expressions and structures, par-
ticularly that of lexical and syntactic forms (Branigan, Pickering, & Celeland, 2000; Bren-
nan & Clark, 1996; Branigan & Pickering, 2017; Cleland & Pickering, 2003). In what fol-
lows, we provide a brief overview of the role of lexical and syntactic alignment in task-based
interactions and touch upon semantic alignment as a relatively new domain of analysis. We
then turn to our main aim of exploring conceptual extensions of linguistic alignment within
a dynamic, complex, and naturalistic CPS task involving spontaneous open-ended speech
communication.

1.1. Linguistic alignment across multiple channels

1.1.1. Lexical and syntactic alignment
Lexical alignment refers to a phenomenon whereby a speaker tends to reuse the same

words and phrases from the recent discourse. According to prominent process models of
dialogue, one of the major purposes for lexical alignment is to establish localized referen-
tial precision (Clark & Wilkes-Gibbs, 1986; Dideriksen, Fusaroli, Tylén, Dingemanse, &
Christiansen, 2019; Pickering & Garrod, 2004). Conversational partners tend to rely heavily
on lexical alignment to draw attention to salient elements within an environment (Dideriksen
et al., 2019), and to form what are known as “conceptual pacts,” a common way of referring to
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objects strongly associated with a particular dialogue partner (Brennan & Clark, 1996). Evi-
dence for lexical alignment tends to be most pronounced in tasks where there is a high degree
of interactivity with a limited number of possible objects. The widely employed “Map task”
and tangram-based paradigms are two such examples (Clark & Wilkes-Gibbs, 1986; Garrod &
Anderson, 1987). In these tasks, participants typically have asymmetric knowledge of a static
environment (e.g., one participant alone having a privileged view; landmarks in the case of
the Map task, ambiguous figures in tangram studies), and success is predicated on establish-
ing shared terms. Although the mechanisms by which participants arrive at this convergence
are not absolute, whether through low-level priming that does not require explicit monitoring
of others’ mental states (Pickering & Garrod, 2004, “interactive alignment”), through a more
active seeking and confirming of mutual understanding (Clark, 1992, “common ground”), or
on more context-sensitive and functionally driven mechanisms outside of a priming/common
ground continuum (Rasenberg, Özyürek, & Dingemanse, 2020; Duran, Dale, & Galati, 2016;
Dale, Fusaroli, Duran, & Richardson, 2013), the same assumption of outcome in most cases
remains: referential language should become simpler, less variable, and more coordinated
over time (Brennan & Clark, 1996; Foltz et al., 2015; Mills, 2014).

Syntactic alignment is another discourse phenomenon that underscores the interdependen-
cies between speakers. This alignment occurs when people reuse recently heard syntactic
structures of their conversational partners in their own speech (Branigan et al., 2000). Syn-
tactic alignment is typically taken as a behavior driven by cross-person priming (Bock, 1986;
Mahowald, James, Futrell, & Gibson, 2016). It mostly occurs outside of conscious awareness,
and reflects an implicit, collaborative attunement to a conversational partner that is unique
from lexical alignment, insofar that the latter involves more explicit tracking of what another
may or may not know. Given the same idea/meaning can be conveyed with divergent syn-
tactic structures, a lack of syntactic alignment does not necessarily interfere with negotiating
a shared knowledge, but it can signal more shallow processing of what another is saying
(Branigan, Pickering, McLean, & Cleland, 2007; Heyselaar & Segaert, 2019). Indeed, in cor-
pus studies of naturalistic dialogue, problem-solving tasks that require greater attention to
another speaker show stronger syntactic priming effects (Reitter, Keller, & Moore, 2006). This
increased attunement to another, as expressed in greater syntactic alignment, helps explain the
findings across other studies where speakers’ comprehension is facilitated by syntactic align-
ment (Noppeney & Price, 2004; Schoot, Menenti, Hagoort, & Segaert, 2014; Thothathiri &
Snedeker, 2008).

1.1.2. Semantic alignment
Semantic alignment attempts to capture how people converge on similar meanings without

the use of strict lexical (symbolic) repetition. Although these explorations have traditionally
been pursued through qualitative analysis (Schegloff, 2007), recent insights have been made
with the use of computational models for generating word embeddings (Angus, Smith, &
Wiles, 2012a; Duran, Paxton, & Fusaroli, 2019; Sagi & Diermeier, 2017). These models
represent word meaning based on the co-occurrence statistics of words across unique contexts
within a vary large corpus of language (Foltz, Kintsch, & Landauer, 1998; Mikolov, Sutskever,
Chen, Corrado, & Dean, 2013). For example, a word like “street” will be similar to “road,”



4 of 35 N. D. Duran, A. Paige, S. K. D’Mello / Cognitive Science 48 (2024)

as compared to “eggplant,” because street and road appear in more contexts that contain the
same types of words. Word meaning thus becomes a distribution pattern of occurrences across
many possible contexts, that is, a high-dimensional vector, based on the neighbors a word
keeps (and, depending on the algorithm used, those it selectively does not keep; see Angus,
Smith, & Wiles, 2012b). Because the unit of analysis in examining alignment is typically at
the level of a conversational turn, the words within each turn can be mathematically combined
to create a higher-order semantic vector. It is these semantic vectors that are then compared
to gauge similarity across conversational turns.

Angus, Watson, Smith, Gallois, and Wiles (2012) are among the first to use a distributional
semantic models to evaluate turn-by-turn semantic alignment in open-ended and spontaneous
conversation. They evaluated physician consultations with patients through the lens of com-
munication accommodation theory (CAT; Gallois, Ogay, & Giles, 2005), where communi-
cation effectiveness was determined, in part, through a greater frequency of semantic repe-
tition by interlocutors throughout an interaction. In related work, caregivers who engaged in
more short-term topic repetition with dementia patients were rated as having more advanced
active listening skills (Baker et al., 2015). Expanding to multi-party interactions involving a
negotiation task, Sagi and Diermeier (2017) also applied a distributional semantic modeling
approach to track semantic alignment as a function of dialogue turns over time (albeit within
a text-based chat environment). They found that those who formed an alliance in the nego-
tiation task showed greater semantic alignment as they converged on an outcome, whereas
others who were also involved in the linguistic exchange, but excluded from the alliance, did
not align. In other words, local convergence (alignment) does not automatically occur when
participating in a linguistic exchange, instead, it is associated with interactions that involve
greater shared understanding and knowledge.

1.2. Trade-offs in alignment during CPS

Although there is much evidence for linguistic alignment in dialogue, open questions
abound on its functional role, whether alignment varies for particular types of linguistic
forms, and how the expression of alignment changes over time given changing problem-
solving needs. Many of the expectations for how alignment should be expressed are obtained
in tasks that constrain variation, such as with strict turn-taking and the use of simple ref-
erents and goals that do not require a diverse vocabulary (Gries, 2005; Howes, Healey,
& Purver, 2010). Many of these tasks also overemphasize the need for convergence of
mental representations. They typically begin with a high degree of asymmetric knowledge
between conversational partners, where common ground needs to be accumulated over time
in order to succeed (Rączaszek-Leonardi, Dębska, & Sochanowicz, 2014). However, as oth-
ers have observed, in complex problem-solving scenarios, dialogue often breaks from con-
vergence and takes on a divergent process involving contrasting views, elaborations, and
updating of prior meanings across turns (Fusaroli, Rączaszek-Leonardi, & Tylén, 2014;
Mills, 2014; Rączaszek-Leonardi et al., 2014). Such variation helps move along a conver-
sation to explore various possible outcomes, and given these processes are likely to influ-
ence lexical and syntactic alignment, it supports observations that interlocutors find persistent
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amounts of high referential precision to be overly redundant and unnatural, and in some cases,
counterproductive to meeting problem-solving solutions (Fusaroli et al., 2014). Indeed,
Amon, Vrzakova, and D’Mello (2019) recently reported that irregularity (i.e., lack of routine
patterns) in teammates’ nonverbal signals better reflected expert-coded CPS skills, whereas
Eloy et al. (2019) found that it better predicted CPS outcomes.

In the current work, we focus on a CPS interaction that we believe represents a more
balanced tension between the dialogue goals of convergence and divergence. Our theoret-
ical motivation is to better understand how various forms of linguistic alignment (lexical,
syntactic, and semantic), as a contextually driven and temporally evolving phenomenon,
are expressed within these more complex interactions. Specifically, the CPS task used here,
explained in greater detail below, requires three people to work together to generate creative
and often ill-defined solutions in visually shared dynamic environments. Each environment
contains a diverse set of referents and possible actions that can be taken on the referents. Often
multiple possibilities need to be entertained and revised to find solutions and avoid impasses.
We argue that the process involved reflects an alternative “synergistic” approach to dialogue
where the primary goal is not to necessarily achieve a mutually shared mental model and to
overcome individuals’ privileged knowledge (Rączaszek-Leonardi et al., 2014). Rather, the
aim of the interaction is to maximize functional outcomes, which is best served by multi-
ple ways of coordinating meaning (Brown-Schmidt, 2012). Depending on the temporal scale
in which communicative demands are examined, as well as the behavioral channel in focus,
evidence for greater convergence and greater divergence of overlapping knowledge should
be found.

We argue that such evidence will be revealed in linguistic alignment when examined in
terms of its presence and magnitude (i.e., does it occur or not, and if so, to what degree) across
conversational utterances. Importantly, simultaneous markers of convergence and divergence
require an assessment of linguistic alignment across its submodalities, separately tracking
the repetition of lexical and syntactic forms, as well as the similarity of semantic information,
across speech turns. Moreover, to reveal changes over longer timescales, it is critical that anal-
ysis occurs within extended, task-based dialogues. In the current study, the dialogue occurs
over 45 min, in 15 min rounds, with sequences of speech naturally sequenced within rounds
into several possible problem-solving trials of varying length (determined by whether partici-
pants are successful in solving individual problems or quit and move on to the next problem).
We quantify change in alignment as a linear trend over time within rounds, as well as within
the shorter trials (i.e., individual problems embedded in rounds). This characterization targets
a type of system change where the behavior of interest, in this case various submodalities of
lexical alignment, evolves toward distinct stable states over different periods of observation
(i.e., System I Dynamics as discussed in Gorman & Wiltshire, 2024).

To offer predictions on how these various changes will be expressed, we take inspiration
from predominant mechanistic accounts without attempting to promote one over the other,
recognizing that certain accounts, like priming, more naturally explain syntactic alignment,
whereas a grounding perspective is particularly salient for lexical and semantic alignment.
We also recognize that the degree to which this is true is largely dictated by how align-
ment is measured and analyzed (Rasenberg et al., 2020), as well as the contextual and
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task demands imposed on speakers. Given both elements are novel in the current study,
predictions are somewhat speculative in nature but draw from relevant research. With this
caveat in mind, one reasonable expectation for lexical alignment is that in creative and uncon-
strained problem-solving tasks, alignment will remain constant throughout the interaction or
even decrease over time. As previously discussed, a major role of lexical alignment is to
establish a common way of referring to objects or actions. But once established, there is also
evidence that repeatedly referring to the same elements within a problem space in the same
way might not be particularly persuasive (Duran et al., 2019; Healey, Purver, & Howes, 2014;
Mills, 2014). Other ways of coordinating meaning may take precedent, such as convergence
within a semantic space of shared topics and themes without the need for precise lexical rep-
etition, that is, semantic alignment. As such, we expect that as lexical alignment decreases,
there will be compensation by an increase of semantic alignment. For syntactic alignment, one
expectation is that it will simply covary with lexical alignment. From an interactive alignment
account, cascading priming effects are assumed across the two linguistic levels (Pickering
& Branigan, 1998; Pickering & Garrod, 2004, the so-called lexical boost effect). However,
there are other reasons to think alignment will decrease for task-specific reasons. Because
priming is a cognitively resource-minimizing process, where preactivated syntactic structures
are easier to produce, its effects should be most pronounced in cognitively demanding tasks
(Pickering & Garrod, 2004). Insofar that these demands decrease with practice, so too will the
presence of syntactic alignment (Foltz et al., 2015). Likewise, in considering an account of
syntactic alignment as influenced by one’s attunement to others, as demands of social engage-
ment decrease with greater familiarity, again, an associated decrease of alignment is expected.
Although the current work is not able to tease apart these various mechanisms, they all point
to a similar prediction of how alignment might unfold over time.

As linguistic alignment becomes more or less convergent, it should also be associated with
the likelihood of problem-solving success. A common expectation, one that is supported by
priming and common ground models, is that greater alignment across individual linguistic
channels predicts positive effects on communicative outcomes, such as in ratings of others’
comprehensibility or whether interlocutors come to a desired agreement (Angus et al., 2012;
Sagi and Diermeier, 2017). However, whether this expectation should also hold in extended
CPS contexts is not as straightforward given conversational goals are not necessarily the same
as CPS goals. For CPS, decreasing lexical alignment, or more breaks in lexical repetition,
with a simultaneous increase of semantic alignment, could be functionally productive for
better problem-solving solutions. And insofar that arriving at better solutions is marked by
less cognitive demand, syntactic alignment could also be expected to be less pronounced.

Here, we add to a growing body of observations by taking a unique approach in evaluat-
ing multiple levels of linguistic alignment at once in a single paradigm, and examining their
importance to a relatively more challenging and open-ended problem-solving space (e.g., CPS
involving triads). Moreover, success in the current task is not binary, but incorporates grada-
tions of quality that can be taken into account. We can do this, as explained next in greater
detail, because our task is composed of multiple and clearly delineated problem-solving sce-
narios where a solution is achieved or not, and the quality of the solution is automatically
assessed as more or less elegant.
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2. Methods and setup

2.1. Data collection

Data analyzed here were collected as part of a multiyear study on CPS. Only aspects ger-
mane to the present analysis on linguistic alignment, which has not been previously published
with these data, are presented here.

Participants were 282 undergraduates (originally 288 but six participants were removed due
to recording errors) from two large public universities in the United States (61% from Univer-
sity 1). Of the 282, 56% were female, with an average age of 21.73 years, and 75% reporting
English as their first language. Participants self-reported the following race/ethnicities: 50%
Caucasian, 26% Hispanic/Latino, 18% Asian, 3% Black or African American, 1% American
Indian or Alaska Native, and 2% “Other.” Participants were assigned to 94 triads based on
scheduling constraints. Forty-three participants from 21 teams (22%) indicated they knew at
least one person from their team prior to participation. Participants were compensated with a
$50 Amazon gift card (96%) or course credit (4%) at the end of the study.

Data were collected in a CPS task involving teams of three participants playing an educa-
tional video game called Physics Playground. This game was developed to support and mea-
sure the learning of conceptual physics (Shute, Ventura, & Kim, 2013). Game play occurs in
a dynamic virtual environment across multiple levels. In each level, the main goal is to move
a small ball to a balloon in the midst of fixed obstacles via the creation and manipulation
of simple objects (ramps, pendulums, springboards, etc.) drawn into the environment with a
computer mouse (as shown in Fig. 1). These objects, as well as the environment as a whole,
obey basic rules of physics relating to Newton’s laws of force and motion, mass, gravity,
potential and kinetic energy, and conservation of momentum. Participants can immediately
see the consequences of their actions and revise them accordingly by adding and deleting
objects as they see fit. Teams can also spend as much time on each level as they like and they
can quit and attempt a new level at any time or reattempt a previous level.

Prior to the day of the scheduled in-lab collaborative task, participants were asked to inde-
pendently complete a brief tutorial on how to play Physics Playground and to complete a few
levels for familiarization with the game. Both components were embedded in a web-based
application that allowed participants to work in an informal setting of their choosing (i.e.,
outside of the laboratory). Although there was no recording of any speech or video during
this initial training, tutorial and practice-level attempts were verified for completion.

For the second phase of the study involving a laboratory-based session, participants were
assigned to work with two other people based entirely on scheduling constraints. They
were placed at separate computers and conversational interaction was made possible through
video- and voice-enabled virtual collaboration (using the Zoom software). One participant
was deemed the Controller who interacted with the game and shared their screen with the
other participants who played the role of Contributors, providing hints, suggestions, and/or
encouragement. Participants could freely talk to each other throughout the collaborative inter-
action via headset-mounted microphones. Audio was recorded as separate channels for each
participant.
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Fig. 1. A game level of Physics Playground where participants employed lever-related physics concepts to lead a
ball to a specified target to solve the level. The team was virtually collaborative over Zoom with video, audio, and
screen sharing enabled.

Collaboration proceeded in three rounds, with each round lasting 15 min and each partic-
ipant randomly assigned to act in the Controller role for each round. There was also a short
break between rounds so participants could individually provide subjective self-report ratings
of the previous interaction (not analyzed in the current study). The first round consisted of
five possible levels that served as both practice with Physics Playground and as an opportu-
nity to become acquainted with each other. The following two rounds consisted of either six
or seven possible unique levels, where each level set contained challenges, objects, and oper-
ations meant to demonstrate a particular physics concept (“properties of torque” or “energy
transfer”). The order in which the concepts were presented across rounds 2 and 3 was counter-
balanced across teams (and added as covariate in all statistical models), whereas there was a
mix of concepts across levels for the initial warm-up round. In addition, we also manipulated
and counterbalanced the CPS goal for rounds 2 and 3, instructing participants to either solve
as many levels as possible in one round, and in another round to attempt to solve levels using
the fewest objects as possible in their solutions (this was an experimental manipulation for
another purpose).

Based on expert-ratings of difficulty (comprising the game mechanics and underlying
physics concepts), easier levels were assigned to the initial warm-up round, whereas mod-
erate/difficult levels were assigned to the next two rounds. Participants were free to choose
any of the levels within each round in any order, though they tended to follow the prescribed
order. Each attempt could end without resolution, be abandoned for a new level and returned
to later, or a level could be solved (i.e., the ball strikes the balloon). Based on algorithms
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established in previous validation studies (Shute et al., 2013), solutions are automatically
evaluated, resulting in immediate feedback in the form of a virtual gold or silver coin. An
optimal (elegant) solution, corresponding to a gold coin, is achieved through drawing a lim-
ited number of objects to solve the problem, emphasizing efficiency/creativity, whereas any
solution earns a silver coin.

To prepare the speech data for linguistic analysis, conversations were segmented into
participant-level turns and transcribed (by humans) using a third-party service called Rev
(www.rev.com). The Rev-recruited transcriptionists are vetted for basic English competency
and trained to identify unique speakers and to write down words as they hear them (some
transcribers also included speech fillers, noted laughter, and noted long pauses, although this
was done inconsistently across transcribers and these annotations were not used in the current
analysis). This data is stored and transcribed within a secure portal where it cannot be down-
loaded onto personal devices. Transcriptionists are also under a nondisclosure agreement to
protect participants’ confidentiality.

Upon completion of each transcription, an internal team of three research assistants com-
pared the transcription to the corresponding video to ensure that (a) each conversational turn
consisted of an utterance from a single participant, (b) a new turn was generated when a
new participant began speaking, and (c) the transcription was accurate (e.g., high fidelity to
what was said, correct spelling). Research assistants corrected minor errors, but for consistent
problems, video/audio files were returned to Rev and reassigned to a new transcriber until all
issues were resolved.

2.2. Quantifying linguistic alignment

Linguistic alignment was calculated using ALIGN, an open-source natural language pro-
cessing tool developed in our previous work (see Duran et al., 2019 for details). The tool com-
putes the amount of lexical and syntactic alignment across conversational turns, and employs
a novel method for computing semantic alignment over time. To prepare the data for analysis,
the transcripts for each game-play level, for each team, needed to be converted into an N x 2
matrix, where each N row is a speech turn of the current speaker in the order it occurred in the
dialogue interaction. In this way, each row is a record of alternating speakers, with associated
data of who is speaking (Speaker A, Speaker B, or Speaker C) and a word-level transcrip-
tion of the spoken utterance. Several standardized preprocessing options were applied to the
dialogue, including: (a) removal of all numbers, punctuation, and other non-ASCII charac-
ters; (b) removal of common speech fillers (e.g., “um” and “uh”); and (c) removal of short
utterances of two or fewer words (typically back-channels and simple affirmations/negations).
Given alignment scores are generated across pair-wise contiguous turns, these preprocessing
settings help maximize linguistic content and variation across comparisons.

• Sample of a typical exchange and formatting after processing:
C: build something right there by the apple
A: that it is an apple
C: yeah it is supposed to be an apple i guess i am just going to call it apple there we

go yes

https://www.rev.com


10 of 35 N. D. Duran, A. Paige, S. K. D’Mello / Cognitive Science 48 (2024)

A: yes okay perfect got it
B: and now you can build on the other side there we go yes
A: there you go back to the other one yes
B: wait go back to the other one okay

The ALIGN tool then makes use of Python’s Natural Language Toolkit (NLTK, Version
3.2.5; Bird, Klein, & Loper, 2009) to generate a tokenized and lemmatized version of each
conversational turn, where tokens are simply words in their original form and lemmas cor-
respond to a grouping together of the inflected forms of a word to create a single unit (e.g.,
“are” and “is” become “be,” “cats” becomes “cat”). Each turn-based token and lemma is then
classified according to its part of speech (PoS; e.g., noun, preposition) using the Penn Tree-
bank tagset and two well-established PoS taggers: NLTK’s default “averaged perceptron”
method and the Stanford Natural Language Processing Group’s log-linear implementation
(Toutanova, Klein, Manning, & Singer, 2003). The taggers will produce slightly varied results
given differences in underlying training corpora and prediction algorithms.

• Example of the first three turns from the example collaborative exchange as lemmas
with Stanford POS tags.
C: [(‘build’, ‘VB’), (’something’, ‘NN’), (’right’, ‘RB’), (’there’, ‘RB’), (’by’, ‘IN’),

(’the’, ‘DT’), (’apple’, ‘NN’)]
A: [(’that’, ‘IN’), (’be’, ‘VB’), (’an’, ‘DT’), (’apple’, ‘NN’)]
C: [(’yeah’, ‘VB’), (’it’, ‘PRP’), (’be’, ‘VB’), (’suppose’, ‘VB’), (’to’, ‘TO’), (’be’,

‘VB’), (’an’, ‘DT’), (’apple’, ‘NN’), (’i’, ‘FW’), (’guess’, ‘NN’), (’i’, ‘FW’),
(’be’, ‘VB’), (’just’, ‘RB’), (’go’, ‘VB’), (’to’, ‘TO’), (’call’, ‘VB’), (’it’, ‘PRP’),
(’apple’, ‘NN’), (’there’, ‘RB’), (’we’, ‘PRP’), (’go’, ‘VBP’), (’yes’, ‘RB’)

To compute linguistic alignment scores, starting with lexical alignment, for each contigu-
ous pair of turns within a larger dialogue, the ALIGN tool generates a vectorized frequency
count of the occurrences of each token or lemma for each conversational turn. The vectorized
frequency counts for the first two turns of the example collaborative exchange are repre-
sented in the following format (based on lemmatization; note the repetition of “apple,” where
Speaker A aligns to Speaker C):

C: [build: 1, something: 1, right: 1, there: 1, by: 1, the: 1, apple: 1]
A: [oh: 1, that: 1, be: 1, an: 1, apple: 1]

The cosine similarity between the two turns is then generated, resulting in a score ranging
from 1 to 0, with higher scores indicating greater repetition of lexical items. This process is
repeated such that each pair-wise turn has an alignment cosine score associated with tokens
and lemmas. These two token/lemma values are then averaged to create a single lexical align-
ment score at each turn.

To compute syntactic alignment, a similar procedure as lexical alignment was used except
for the PoS sequences being first converted into n-grams, specifically bi- and tri-grams, to
capture variation in structural complexity. For each n-gram representation of each turn, the
tool computes a vectorized frequency count. For example, the following is the vectorized
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Table 1
Example of cosine scores computed across pair-wise turns in a dialogue

Semantic Lexical
(uni-gram)

Syntactic
(bi-gram)

C: And now make it really heavy. – – –
B: I wonder if we just add a weight. 0.698 0 0.482
A: It does not have to be too big. 0.608 0 0.378
C: Is that the one where we have to make it

heavier on the other side?
0.695 0.343 0.216

Note. Each value, which can range from 0 to 1, represents alignment of the speaker to the previous speaker
(second row values: Speaker B aligned to Speaker C). This example also shows how semantic alignment can be
elevated (higher cosine values) while having lexical alignment at zero.

frequency counts for a bi-gram representation for a pairwise exchange in the sample dialogue
(based on tokens; note the repetition of the [RB PRP] bigram, where Speaker A aligns to
Speaker B):

B: [[and now, CC RB: 1], [now you, RB PRP: 1], [you can PRP MD: 1], [can build, MD
VB: 1]...]

A: [[there you RB PRP: 1], [you go PRP VBP: 1], [go back, VBP RB: 1], [back to, RB
TO: 1]...]

Before a cosine comparison between pair-wise turns is made, we also applied a stricter test
of syntactic alignment by removing n-gram sequences that were also lexically identical across
turns, thereby minimizing conflation in determining whether syntactic alignment is merely
lexical overlap (i.e., a so-called “lexical boost”; Healey et al., 2014; Pickering & Branigan,
1998; Reitter et al., 2011). Because there are two PoS taggers applied to either token or lemma
representation and further divided into either bi- or tri-grams, a total of eight cosine scores
(2 taggers x 2 lexical representations x 2 n-gram types) are generated for each pair-wise
conversational turn sequence. These eight values were averaged to create a single syntactic
alignment score at each turn.

Semantic alignment makes use of Google’s word2vec model to attain high-dimensional
vectors for each word in a conversational turn. This model involves a massive semantic
space, with a vocabulary of 3 million words trained on the Google News dataset (about
100 billion words). The vector representations were then combined by simple additive compo-
sition, resulting in a new “turn-level” projection in the semantic space. We also used ALIGN’s
default settings to exclude those words that occurred only once in the entire Physics Play-
ground transcripts and words that were extremely frequent (exceeding three standard devia-
tions of the mean frequency count of all words). Staying consistent with lexical and syntactic
alignment, cosine scores were generated for each contiguous turn pair to create a running
sequence of values over the course of a conversational transcript. Higher values correspond
to turn pairs that are more semantically related given colocation in similar regions of the
imported semantic space (see Table 1).
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Fig. 2. Mean duration and mean number of turns for levels that ended in a gold, silver, or no coin (none) outcome.
Error bars indicate standard deviations.

It is important to note that this approach of using word2vec to capture word and utterance-
level meaning allows a more flexible way of capturing referential overlap, akin to that which
supports theories of “conceptual pacts” (Brennan & Clark, 1996), but in a more expansive
and flexible way than going about it by lexical repetition alone. In our CPS task, as is the
case in many such tasks, the focus is largely on a set of referents and possible actions among
the referents. To complete the task, it is within this space that the vast amount of language is
directed. Interlocutors can use lexically isomorphic expressions to engage in shared reference,
but they are also not obligated to do so.

2.3. Level and outcome characteristics

We analyzed the language from 94 teams (282 participants) who played three rounds of
Physics Playground. A total of 1089 levels were played by teams across all three 15-min
rounds. Not all levels could be used to compute linguistic alignment because of an insufficient
number of conversational turns in each. To ensure a reliable signal for measuring amount of
alignment and its temporal change, while also preserving as much data as possible, we set an
inclusion threshold for levels of 20 turns or higher. This allowed 633 (58.13%) of the levels
to be retained for evaluation (number of turns: M = 54.25, SD = 34.92; words per turn: M =
11.48, SD = 3.03).

Of the 633 reduced levels, 107 resulted in a gold coin, 242 in a silver coin, and 283 went
unsolved. As shown in Fig. 2, teams generally took more time and required more turns in
levels that went unsolved as compared to levels where they earned a gold or where they
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earned a silver coin. In comparing between gold and silver, silver coins took more time and
required more turns. These differences were confirmed with a linear mixed model with team
as a random effect (see Appendix A for full results).

2.4. Recap

Before turning to our more detailed findings, we pause here to reiterate our operationaliza-
tion for how we are measuring, and ultimately analyzing, linguistic alignment. We do so by
way of a framework developed by Rasenberg et al. (2020). This framework consists of five
theory-agnostic dimensions that nearly all behavioral alignment research can be described by,
and is useful for establishing the boundary conditions by which this work should be compared,
as well as making more transparent how our methodological commitments might privilege
particular mechanistic interpretations.

Using a similar setup as Rasenberg et al. (2020), Fig. 3 provides a descriptive snapshot of
this study across the five relevant dimensions: modality, form, meaning, time, and sequence
(top panel). The prose for each dimension is linked to a visualization (bottom panel) that
represents an interaction between three speakers, depicting how alignment across speak-
ers’ utterance turns can be related to the Rasenberg et al. (2020) dimensions. For the three
linguistic channels (lexical, syntactic, and semantic) that comprise modality, the underlying
forms in each utterance are automatically extracted as either count occurrences or as word
embeddings that can be represented in a common vectorization scheme, thus allowing the
same cosine similarity metric to be equally applied for quantifying alignment as an ensemble
of submodalities. In terms of meaning, the use of an automated approach emphasizes the repe-
tition of lexical units, inclusive of many types of non-differentiated meaning (e.g., opposed to
Fusaroli et al. (2012) targeting of a specific speech act), and syntactic units that are primarily
independent of meaning.

This characterization is further complemented with an additional automated approach for
capturing nonrepeated lexical forms, incorporating a form of meaning in terms of high-level,
semantic convergence. For time and sequence, utterance turns are targeted for analysis based
on the temporal order in which they are spoken (e.g., Speaker A follows Speaker B; Speaker
B follows Speaker C) rather than on any specific coordination adjacencies (e.g., repair state-
ments, question-answer pairs). Given the current work focuses on naturalistic and extended
conversational interactions, the durations between paired utterances are quite short, with occa-
sional longer lags.

The dimensions of time and sequence also carry privileged consideration in this work.
Going beyond the Rasenberg et al. (2020) framework, which mostly focuses on the relation-
ship between paired, localized behaviors, the current study prioritizes the evolving nature of
alignment as a linear change within distinct game-play levels and also collapsed across lev-
els within longer rounds. Alignment is, therefore, examined at two timescales: one where
change is bounded by encountering specific novel problems, and another that represents an
accruing familiarity with each other and general adaptation to study-imposed role changes (as
a different participant was assigned to be the controller in each round).
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Fig. 3. Top panel: The table provides the distinctive properties of the current study as organized based on the
multidimensional Rasenberg et al. (2020) framework for understanding and investigating alignment. Bottom panel:
Visualization of an interaction between three participants that captures framework features as well as unique
study-specific considerations. The embedded darker rectangles represent a spoken utterance of varying length for
a particular participant.

3. Analysis 1: Alignment over time

3.1. Statistical models

In exploratory analysis, lexical and syntactic alignment scores showed many instances of
nonoccurrence across contiguous turns, resulting in a distribution with clumping at zero and
a skew in the positive values (see Fig. 4). To account for these data, we make use of a hurdle
model that separates the analysis into two parts. In the first part, we use a binomial generalized
linear mixed model (GLMM) to predict whether alignment occurred to any degree versus
the absence of alignment. Then, in the second part, we use a gamma-distributed GLMM to
evaluate just the nonzero data that captures the magnitude of alignment. Given the nonzero
data involves positive and continuous nonintegers, the gamma distribution is most appropriate
in this instance, opposed to more common models that require a truncated count distribution.
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Fig. 4. Distribution of alignment scores for each linguistic type.

In the binomial component of the hurdle model, the logit link was used in predicting the
presence of alignment (nonzero vs. zero occurrences). For each independent variable, the
resulting coefficients are the expected change in log odds of presence for a one-unit increase
in the independent variable. In the case of turn order, a one-unit increase is from the start to
the end of the level, and for categorical variables, change is relative to the reference category.
For ease of interpretability, the coefficients are typically exponentiated to generate an odds
ratio, and subtracting 1 from the odds ratio (odds ratio –1) and multiplying by 100 gives
the percentage change in the presence of linguistic alignment for a one unit increase in the
corresponding independent variable.

For the gamma component, which examines just the nonzero values of alignment, we use
a log link that allows us to predict the model-adjusted mean of alignment. For each indepen-
dent variable, being on the log scale, we can also exponentiate the resulting coefficients to
produce a rate ratio, that is, a multiplicative factor, expressing the expected change of align-
ment magnitude for a one-unit increase in the independent variable. By subtracting 1 from the
rate ratio and multiplying by 100, we can also interpret the change on magnitude of linguistic
alignment as a percentage.

Unlike lexical and syntactic alignment, distributions for semantic alignment rarely con-
tained zero values and are normally distributed. Accordingly, we used linear mixed-effects
regression to evaluate the time-course of semantic alignment magnitude within levels
and across rounds. Estimates are interpreted as indicating how a 1-unit change in each
independent variable causes a linear change in semantic alignment (i.e., effectively, the mag-
nitude of alignment).

All analyses were performed with R statistical software using the lme4 package (ver-
sion 1.1-23; Bates, Maechler, Bolker, & Walker, 2015). All materials, the collected data,
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and analyses scripts can be accessed from a Github public repository: https://github.
com/nickduran/cps-ling-align

3.2. Analytical approach

Each of the three linguistic alignment variables were entered as response outcomes in their
respective models. For all, we included fixed effects for within-level progression of time,
represented as turn order within each level, and an ordered factor (linear progression) for
round. Given each Physics Playground level varies in duration and number of turns, turn order
was transformed as a proportion of total turns (e.g., accruing values from 0.00 and 1.00).

We also included additional fixed-effects covariates to account for subject and team-level
characteristics: duration of each level (measured in seconds), start time of each level within
each round (measured in seconds elapsed from start of the round), number of words spoken
in each turn (measured as a count), the aligner’s role (either a contributor or controller of
the interface), and the concept being targeted in each level (either “properties of torque” or
“energy transfer”). The continuous scores for level duration, level start time, and turn length
variables were z-score standardized before being entered into the model. As a reminder, for
lexical and syntactic alignment, these covariates are reported as odds ratios, whereas for
semantic alignment, they are reported as regression coefficients.

For all models, to examine the appropriateness of their random effect structures, we tested
whether a more complex model with by-subject random slopes for role provided a better
fit than by-subject random intercepts alone. We used Akaike information criteria (AIC) to
compare the models via the AICtab function from the bbmle package (version 1.0.24). The
function reports the differences in AIC from the best model, with lower AIC scores being
desirable. We also report a likelihood-ratio (LR) test between models using the lrtest func-
tion from the lmtest package (version 0.9-39). Next, having selected a model with a relatively
higher quality random effects structure, we compared the estimates of this model with a stan-
dard version that contains the same predictors but omits the random effects. Again, we used
AIC to compare the two models to determine whether the inclusion of subject-level variance
produces a relatively better fit to the data.

Lastly, to evaluate overall model significance, we compared the full version of the final
model with a null version that omits the predictors (but retains the same covariates). Model
comparisons are made and reported as an LR test.

3.3. Results

For all models, the more complex random effect structure involving by-subject random
intercepts and slopes was ultimately selected over random intercepts only (Appendix B:
Table B.1 for results). The mixed effects model also provided a better fit than a
model that does not account for the dependency among data points via random effects
parameters (Appendix B: Table B.2). The comparison of the full models versus their
respective null version showed that each was statistically significant at the p <.001 level
(Appendix B: Table B.3).

https://github.com/nickduran/cps-ling-align
https://github.com/nickduran/cps-ling-align
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Fig. 5. Forest plots with exponentiated results for lexical alignment and syntactic alignment. The binomial logistic
mixed effects models correspond to the presence of alignment, whereas gamma mixed effects models correspond
to the magnitude of alignment.

3.3.1. Presence: Lexical and syntactic alignment
The exponentiated model coefficients (to facilitate interpretation) are reported in Fig. 5. For

the binomial logistic mixed effects models, there was no statistically significant difference for
presence of alignment from the start to end of the Physics Playground level (lexical: log effect
estimate = –0.027, Wald CI –0.11, 0.05; syntactic: log effect estimate = –0.043, Wald CI –
0.12, 0.03). However, the linear trend across rounds showed a lower presence of alignment as
rounds progressed, with a decrease of approximately 6.57% for lexical alignment (log effect
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estimate: –0.068, Wald CI –0.11, –0.02, p = .002) and 5.45% for syntactic alignment (log
effect estimate: –0.056, Wald CI –0.10, –0.01, p = .013).

Estimates of between-subject standard deviations were 0.187 and 0.182 for lexical and
syntactic alignment, respectively, indicating low to moderate variation among subjects.

The statistically significant covariates also showed that the presence of alignment was more
likely for participants in the controller role (vs. contributor) (lexical: log effect estimate =
0.094, Wald CI 0.04, 0.14, p <.001; syntactic: log effect estimate = 0.195, Wald CI 0.15,
0.24, p <.001, and as the duration of a level increased (lexical: log effect estimate = 0.052,
Wald CI 0.02, 0.08, p <.001; syntactic: log effect estimate = 0.043, Wald CI 0.01, 0.07, p
= .004). And as might be expected, as a turn increased in length, the likelihood of alignment
increased (lexical: log effect estimate = 0.826, Wald CI 0.79, 0.86, p <.001; syntactic: log
effect estimate = 1.070, Wald CI 1.03, 1.11, p <.001). Level start time and concept (PoT vs.
EcT) did not predict either lexical or syntactic alignment presence.

3.3.2. Magnitude: Lexical and syntactic alignment
Based on the gamma-distributed mixed effects models, for the magnitude of alignment

from the start to the end of the Physics Playground levels, there was a 3.44% reduction in the
mean of lexical alignment (log effect estimate = –0.035, Wald CI –0.06, –0.01, p = .012) and
a 7.78% reduction in the mean of syntactic alignment (log effect estimate = –0.081, Wald CI
–0.12, –0.04, p <.001). However, unlike the presence of alignment, there was no statistically
significant difference for the magnitude of alignment as rounds progressed (lexical: log effect
estimate = –0.002, Wald CI –0.02, 0.02; syntactic: log effect estimate = –0.009, Wald CI
–0.03, 0.01).

As with presence, the standard deviations of between-subjects variance values (.075
and.088 for lexical and syntactic alignment, respectively) indicate minimal variation among
subjects for alignment magnitude.

Several covariates for lexical and syntactic alignment were also statistically significant. For
both, when participants were assigned to the controller versus contributor role, the likelihood
of greater magnitude of alignment decreased (lexical: log effect estimate = –0.047, Wald CI –
0.07, –0.02, p <.001; syntactic: log effect estimate = –0.054, Wald CI –0.09, –0.02, p <.001)
and for longer turns, the likelihood of greater magnitude of alignment decreased for lexical
(log effect estimate = –0.054, Wald CI –0.06, –0.05, p <.001) but increased for syntactic (log
effect estimate = 0.024, Wald CI 0.01, 0.03, p <.001). Further, as a level appeared later in
a round (i.e, start time), there was a higher likelihood of greater lexical (but not syntactic)
alignment (log effect estimate = 0.011, Wald CI 0.00, 0.02, p = .027), whereas syntactic (but
not lexical) alignment was likely to be greater as the duration of a level increased (log effect
estimate = 0.025, Wald CI 0.01, 0.04, p <.001). Once again, concept did not predict lexical
or syntactic alignment magnitude.

3.3.3. Magnitude: Semantic alignment
Table 2 shows the results for all predictor variables. Of the primary predictors, there was a

statistically significant increase of semantic alignment magnitude as turns progressed within
Physics Playground levels. However, the linear trend of semantic alignment across rounds
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Table 2
Predicting semantic alignment scores for adjacent turns across time

Semantic

Predictors Estimates CI p

Utterance order 0.010 0.004–0.016 .002
Block (linear trend) 0.000 –0.003 to 0.004 .830
Role [controller] 0.016 0.011–0.020 <.001
Level start time 0.000 –0.002 to 0.002 .803
Level duration 0.001 –0.001 to 0.004 .216
Utterance length 0.051 0.050–0.053 <.001
Concept [PoT] 0.001 –0.003 to 0.005 .629

Note. The table presents the estimates, confidence intervals, and p-values, as predicted by turn order and
round. Values in bold indicate significance at the p <.05 level. Participant and game-level related covariates are
also reported.

was not statistically significant. For covariates in the model, the effect of role was statistically
significant, such that the controller showed a tendency to align to a greater magnitude than
the contributors, and the effect of turn length was also statistically significant; longer turns
tended to have higher semantic alignment values.

For the overall model, the estimate of among-subject standard deviation was low, with a
value of 0.019.

3.3.4. Baseline data for comparison
In examining patterns of linguistic alignment, it is assumed that the repetition of lexical

items and syntactic phrases between contiguous turns are due to sensitivities of what a partic-
ular partner is saying as it is being said in real time. Nevertheless, it is still possible that sim-
ilar frequency patterns are observed that are not partner-specific but rather driven by contex-
tual constraints, where a limited set of referential items and the structure of the environment
restrict how language can be used. To control for this possibility, we created mock conver-
sations for each game level that preserved the original speakers and the order in which they
spoke, but the utterance attributed at each turn to the speaker was a randomly selected utter-
ance from the same speaker within the same dialogue. Because no utterance was repeated,
the overall frequency of lexical items and syntactic phrases were identical to the original. The
crucial disruption was in the assumed structural information driven by the potential depen-
dencies of what was said by one partner as an immediate (contiguous) response to another.
The ALIGN analysis was rerun on these mock conversations to generate baseline turn-by-turn
linguistic alignment scores. The same statistical analyses as performed on the original data
were replicated with the baseline data to determine whether similar statistical results could
be reproduced.

When the same analyses were run using the baseline data of mock conversations, there
were no statistically significant fixed effects for the main predictors. Interestingly, the overall
amount of alignment between the real and mock conversations did not vary greatly, indicating
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what matters most between real and mock conversations is how alignment changes over time.
Detailed results from statistical models are reported in Appendix C.

4. Analysis 2: Linguistic alignment and CPS outcomes

For each team, we also identified the start and stop times of each attempted level, and
recorded whether the team had achieved a gold, silver, or no coin for that level as our out-
come measure. We then regressed CPS outcome on the different types of linguistic align-
ment scores.

4.1. Statistical modeling

We built an ordinal regression mixed-effects models to predict the likelihood of solving a
level (i.e., silver/gold coin vs. no coin) based on alignment amount (mean-centered), with an
additional interaction term with within-level progression of alignment over turns/time (mean-
centered). Models were adjusted for game-play level characteristics hypothesized to most
influence the potential for earning a coin, including which round the level occurred, the level
duration (z-scored), start time of each level within each round (z-scored), whether the level
was revisited (vs. first attempt), and the concept (EcT or PoT) being presented in each level.
A random effect term for the clustered variance of team was included (given coin attainment
is fundamentally the product of team interaction). For the primary model, all linguistic align-
ment variables were entered at once to predict performance. Doing so provides insight as to
whether each predictor is uniquely informative when we take into account the presence of
the other linguistic variables. We also report the results of separate models for each linguistic
variable. Analyses for performance prediction were conducted with the use of the “ordinal”
R package (version 2019.12-10).

4.2. Results

As can be seen in Table 3, only semantic alignment contributes unique information to CPS
performance. For every one unit increase in semantic alignment, the odds of being more
likely to earn a coin decreases (OR = 0.841, p = .035). For the random effect, the estimate
of among-team standard deviation was 1.033, with an inter-class correlation of 0.234. There
were no interactions with turn order, suggesting that neither an increase or decrease of align-
ment across conversational turns was predictive of performance outcome.

For models run separately for each linguistic predictor, a similar pattern emerged where
only semantic alignment was associated with decreased odds in earning a coin (OR = 0.845,
Wald CI 0.735, 0.972, p = .019). However, for syntactic alignment, when its effects are
examined without taking into account the frequency of the other variables, there was a
marginally statistically significant effect also showing an association between greater align-
ment and decreased odds of earning a coin (OR = 0.784, Wald CI 0.599, 1.026, p = .076).
Lexical alignment remained statistically insignificant (OR = 0.936, Wald CI 0.819, 1.069,
p = .327)
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Table 3
Predicting task outcomes based on linguistic modality alignment and interactions with turn order

Trophy

Predictors Odds ratios CI p

Lexical 1.050 0.894–1.234 .551
Syntax 0.854 0.639–1.142 .287
Semantic 0.841 0.716–0.988 .035
Lexical * Time 0.836 0.484–1.443 .519
Syntactic * Time 0.795 0.296–2.134 .649
Semantic * Time 0.978 0.568–1.685 .937
Block (linear trend) 0.633 0.604–0.663 <.001
Level Duration 0.286 0.276–0.297 <.001
Level Start Time 0.381 0.369–0.393 <.001
Revisit [yes] 0.667 0.571–0.779 <.001
Concept [PoT] 2.733 2.578–2.898 <.001

Note. To interpret the odds ratios, the odds of obtaining a coin is either increased (above 1) or decreased (below
1) as amount of alignment increases. Level- and turn-related covariates are also included in each model.

All covariates entered into the models were statistically significant. Again, as shown in
Table 3, the odds of earning a coin was less likely for levels that occurred later within rounds
(Level Start Time), that occurred later across rounds (Block [linear trend]), that were longer
in duration (Level Duration), and in levels that the teams revisited after already experiencing
a prior impasse (Revisit [yes]). Levels dealing with the concept of “property of torque (PoT)”
over “transfer of energy” were also more likely to receive an earned coin (Concept [PoT]).

5. Discussion

There is a need to better understand the various forms of linguistic alignment as contex-
tually driven and temporally evolving phenomena in complex tasks. The goal here was to
do so within a CPS scenario. Not only is this important theoretically, but also practically, as
the future of work and education has undergone a pronounced shift toward nonroutine ana-
lytical tasks that require team-based solutions (Levy & Murnane, 2012; Wüstenberg et al.,
2012). These tasks often involve solutions that can be arrived at from many possible direc-
tions and require creative exploration (Graesser et al., 2018). It is also where people’s abili-
ties to use language to communicate and coordinate meaning is often maximally challenged
(Dillenbourgh & Traum, 2006; Fiore & Salas, 2004).

In the current work, we explored how interactive linguistic alignment changes in CPS
interactions: across more localized levels (turns) to more large-scale changes across rounds.
We also evaluated whether the amount of alignment of different linguistic types predicted
the likelihood of success in each task. Our exploration took place in a virtual environment
where some of the control common to lab-based, dyadic problem-solving tasks was sacrificed
for nonroutine, analytical, and dynamic interactions involving teams of three. Despite the
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complexity, we found unique statistically significant patterns of alignment. Of most interest
are those patterns that provide a glimpse into how teams linguistically ground meaning and
its implications for associated cognitive processes.

5.1. Trends in alignment over time within levels and across rounds

Notably, and consistent with our predictions, there was a decrease in lexical alignment
over time within a level suggesting that precision, that is, referring to the same things in the
same way, diminished as participants gained greater familiarity with the problem domain and
each other’s understanding. There was also an apparent trade-off of lexical repetition with an
increase in semantic alignment, pointing to greater convergence of shared topics and themes
over time.

The above pattern was most evident with alignment measures of magnitude (opposed to
presence) and as expressed within levels (opposed to across rounds). This is likely because
each level resets with a new and unfamiliar problem to solve, and thus the need for preci-
sion should also reset in a more pronounced way. That this occurs with magnitude alone
suggests that precision is not established by the simple frequency (presence) of alignment
events (coded as a binary outcome of present or not), but instead by the depth of the align-
ment; where greater magnitude (continuous, positive values) is associated with an increased
number of lexical items or longer phrases being repeated.

Although the alignment measure for presence did not vary within levels, it did decrease
across rounds. It is important to note that when evaluating alignment from round to round,
a more general behavior is being captured that has less to do with the particular demands of
any level, but more on how participants are coordinating meaning globally. Presumably, after
each 15-min round of interaction, participants are becoming more familiar with each other and
potentially more adaptive. It appears that participants needed to “check in” with each other
less with the repetition of phrases or lexical items, thus a decreasing frequency (presence)
of alignment across rounds. But when participants did touch base, there is apparently no
appreciable change in the depth (magnitude) of that alignment.

Another identified pattern was a decrease of syntactic alignment over time for magnitude
within levels, and a decrease over time for presence across rounds. Given our computation
of syntactic alignment excluded lexical overlap (thus minimizing a lexical boost effect), it
suggests mechanisms at play that are less directly tied to meaning. Based on a cognitive
processing or partner attunement account, decreasing syntactic alignment might be associ-
ated with less cognitive demands with practice, or a decreasing attunement to others, or both.
Although the current study is unable to directly assess the exact mechanism, it does raise inter-
esting possibilities for future work. For example, coordination processes that require greater
cognitive demands or attunement might occur earlier within our problem-solving levels, thus
higher syntactic alignment, that then give way to decreased demand or attunement as coordi-
nation shifts to new processes. Indeed, by recognizing that CPS interactions generally involve
qualitative phases of team-level (distributed) processes (Bales & Strodtbeck, 1951; Fiore
et al., 2010), a closer examination of linguistic alignment might help reveal otherwise hidden
trajectories.
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The patterns of alignment found here also find support across diverse theoretical perspec-
tives in how shared meaning is forged during communication. For example, in the area of
experimental semiotics, a notable finding is that in highly interactive tasks where partners are
asked to create and interpret novel communication systems, the shared depictions that emerge
become simpler and less complex over time, similar to what happens with the creation of con-
ceptual pacts during experimental tasks using natural language (Galantucci & Garrod, 2011;
Nolle & Galantucci, 2023). Despite this reduction of precision, communication remains effi-
cient so long as the depictions maintain a high degree of semantic complexity (Garrod, Fay,
Lee, Oberlander, & MacLeod, 2007). This process is not so different in kind from what we see
in our study. There is a strong possibility that partners were trading one form of precision for
another. Across each of the game-play levels, although repetition of lexical referents tended to
diminish, the referential cohesion supported by this repetition was still present but now cap-
tured in the overlap of semantically similar utterances. This interpretation also underscores
the significance of using distributional semantic models, such as word2vec, for alignment
research. Although the meanings they represent are incomplete approximations of the con-
ceptual richness that emerges during conversational interaction, they do serve as useful tools
that allow for a more comprehensive and flexible understanding of referential overlap that is
not captured by lexical repetition alone.

5.2. Patterns of alignment associated with collaborative success

For each CPS interaction in our dataset, we also measured whether a solution was achieved
and the quality of the solution. For the relationship between alignment and task performance,
the predominant pattern found across CPS interactions (i.e., with respect to decreased lexical
and syntactic alignment over time) did not translate into better performance. Indeed, not only
was semantic alignment alone predictive, it also ran counter to intuitions based on simple
communicative tasks that greater convergence should lead to better shared understanding and
thus better problem-solving. But much depends on unique task goals and the communicative
context. In our study, it is plausible that less semantic alignment predicts better performance.
In tasks which require multiple possibilities to be entertained, too great of perseveration on
any single solution, as captured by high semantic alignment, leads to detrimental dead-ends.
What is instead needed is greater complementarity and exploration of ideas, where team mem-
bers contribute different content and perspectives (also see Dideriksen et al., 2019).

This interpretation is one that is bolstered by recent brain-based evidence examining how
communication partners establish “conceptual alignment” (Stolk, Verhagen, & Toni, 2016).
In this framework, partners converge on a shared understanding by exploring and finding
diverse connections within a large web of conceptual, and often unrelated, possibilities. Much
of this process is marked by mutual inference of what others might know given the evolving
interactional context (at many timescales, including the individual and shared histories of
those involved). Inferences are achieved by using words to probe and bias the fleeting con-
ceptual structures, but the utterances themselves do not contain a priori the meaning that
emerges at the conceptual level. This is evidenced in neural regions of mutual understand-
ing that are invoked at temporal scales independent from the occurrence of the linguistic
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signal itself. Relating this to the current findings, success in our interaction task required
participants to problem solve within a highly generative communicative scenario where the
set of open-ended possibilities is greater than that of more rigorously controlled experi-
mental approaches. If “conceptual alignment,” as the work by Stolk et al. (2016) suggests,
is associated with a superior ability in navigating a shared conceptual space through the
exploration-exploitation of many possibilities, in which the words used are fleeting reflec-
tions of this process rather than constitutive of it, than alignment at the signal level (lexi-
cal and syntactic) should not carry much information. Moreover, the process of “conceptual
alignment” is one where semantic alignment—a measure that is fundamentally capturing a
type of referential consistency—would see greater variation (and thus a decrease in overall
magnitude).

5.3. Limitations and additional considerations

To structure the current work and motivate our analyses, we provided a set of expectations
from existing theory on how linguistic alignment and CPS success might be related: specifi-
cally, an expectation that there will be a decrease in lexical and syntactic alignment with an
increase in semantic. What we found instead was that decreased semantic alignment overall
to be associated with success. Although we have already discussed an alternative theoretical
viewpoint to address these findings, there is always the possibility that our task simply fails to
capture CPS in a meaningful way, and this itself could explain the unexpected relationships.
There is some support to this view as only one participant had control over the computer
mouse during game play, possibly curtailing collaboration. Acknowledging this possible lim-
itation, we would also point out that the task still has all the elements identified in related
work as necessary for successful collaboration (Szewkis et al., 2011). Through screen sharing,
actions performed by participants with control over the mouse were observed by their partners
and thus they were accountable for these actions, and there was continual awareness among
all participants about the current state of their partners and the team. Participants also submit-
ted joint answers and received joint outcomes/rewards in return (e.g., trophies awarded, levels
completed), and they indicated positive interdependence in follow-up assessments. Overall,
the task required team members to work together and communicate effectively in pursuit of
shared objectives.

Although there is a good reason to assert collaboration was essential for our task, what
is less clear is the extent in which collaboration was driven solely by the linguistic signal.
The task demands were such that participants controlling the computer mouse could signal
understanding of a solution by actions taken in the visually shared workspace. If collabora-
tion is offloaded in this way, there is less of a need to signal and coordinate meaning across
verbal turns. Indeed, the problem-solving levels with the most elegant solutions were also
those where language was least used, as seen with the “gold coin” solutions that were solved
with the fewest turns (even after retaining only those levels with 20 or more turns; see Fig. 2).
Nevertheless, this sensitivity to the broader communicative domain points to a reality of com-
plex communicative interactions where cognition is distributed among people and into the
task environment. Optimal CPS is inherently a multimodal phenomenon where individual
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behavioral channels become more or less pronounced (like language) given changing
demands and available resources.

The reality of this situation also points to the need for more comprehensive analyti-
cal approaches that go beyond single communicative channels and automated techniques.
Although a great deal of information can be gained with using a tool like ALIGN that focuses
only on transcribed utterances, integrating with qualitative investigations would allow for
more nuanced understandings of how the nonverbal cues, pauses, hesitations, gestures, and
drawings within the visually shared workspace play a pivotal role in shaping shared under-
standing (Cornejo, Cuadros, Morales, & J, 2017; Hadley, Naylor, & Hamilton, 2022; Obhi
& Cross, 2016). These insights range from the emotional, social, and cognitive; be it in how
participants nod their heads in agreement, raise their eyebrows in surprise, or cross their
arms defensively; to how participants might emphasize a point, invite a response, or signal
uncertainty through a well-timed pause; or in how participants signal cognitive processing,
doubt, or a desire with hesitations via various “speech fillers” (which are currently ignored
given the difficulty of consistently transcribing accurately). There are also rich gestural and
visually drawn depictions afforded by our task to consider. Physics concepts naturally lend
themselves to gestures and visual aids to indicate direction, size, or movement, which are all
integral for conveying complex concepts and in clarifying ambiguities (Johnson-Glenberg &
Megowan-Romanowicz, 2017). Future work will need to more effectively capture this infor-
mation with a combination of quantitative and qualitative methods, a challenge that generally
applies to all research programs that examine the shared understanding-building processes in
conversation.

As another consideration raised by the current study, there is an important distinction
between “conceptual alignment” and “semantic alignment” that we have indirectly drawn
thus far but is worth explicating as it calls into question the ability of distributional semantic
models to ever adequately capture mutual understanding in human communication. Although
we believe that distributional semantic models like word2vec are useful tools for shed-
ding new light on communicative processes (Günther, Rinaldi, & Marelli, 2019; Kumar,
2021, also see), their capabilities should not be confused with how meaning is actually
established and deployed in conversation. What cannot be captured is a conceptual align-
ment that is fundamentally informed by the specific interactions in which they occur (Stolk
et al., 2016). That is, meaning is very much constituted by the demands of the inter-
action itself, and what words mean within and across conversational turns are tuned to
maintaining the coherence of the ongoing interactive system (Rączaszek-Leonardi et al.,
2014). What is said, or what one anticipates saying, is useful insofar, that is, organizes
experience for those involved in mutually relevant ways. From this perspective, word-level
meaning is emergent and participatory. It is jointly structured by environmental and con-
textual constraints. It is determined by its ability to coordinate individuals into a func-
tional system. Word2vec and similar models, no matter their computational complexity
and impressive feats of approximating semantic knowledge, fail to capture the full extent
of conceptual complexity during real-time interactions because they are based on algo-
rithms that encode/decode information from stored representations established prior to that
interaction.
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What then do distributional semantic models provide for us in the context of our study?
Although they do not capture the conceptual richness of the words as they functioned when
originally uttered, nor for that matter nonlinguistic, sensorimotor experiences that undoubt-
edly shape meaning (Binder et al., 2016; Frisby, Halai, Cox, Lambon Ralph, & Rogers, 2022),
they do allow insight into the semantic relatedness between utterances that are not restricted
to strict lexical overlap. But it is important to keep in mind that this semantic relatedness is
ultimately that which exists in a high-dimensional vector space derived from pre-existing text
(in the case of our use of word2vec, billions of words from Google News).

As mentioned earlier, it has also been shown that CPS interactions involve distinct qualita-
tive phases where various competencies are more or less pronounced. We know with certainty
from previous analyses that participants in our study are engaging in a number of critical
competencies, such as actively constructing a shared knowledge, negotiating among possible
solutions, and testing/revising agreed-upon solutions (Sun et al., 2020, 2022). What is yet
unexplored is how these are possibly clustered. This leads to possibilities for future work
in analyzing episodes of convergence and divergence as distinct phases in CPS coordination
processes. New techniques need to be devised that go beyond our current scale of linguis-
tic alignment analysis —as something that linearly changes over time—to something that
captures distributed patterns that map onto critical phases (Wiltshire, Butner, & Fiore, 2018,
for an example using nonlinguistic data). Even so, we believe our general approach lends
support to process models of dialogue that prioritize the role of parallel (graded) and dis-
tributed mechanisms in coordinating meaning (Brown-Schmidt, Gunlogson, & Tanenhaus,
2008; Rączaszek-Leonardi et al., 2014). In what is a “synergistic” process model, complex
communicative interactions are best characterized by an interplay of convergent and divergent
mechanisms. The current work suggests that it is possible for these trade-offs to be simulta-
neously expressed across different channels of linguistic alignment (at least at one level of
analysis).

We also recognize that the methods for studying social interaction exist along a contin-
uum, from maximally naturalistic observation on one end to completely controlled exper-
imentation on the other (Kendrick, 2017). For the current work, our objective was aimed
somewhere near the middle, where social interaction was placed in a controlled situation that
allowed detailed measurements and a wide range of known variables, and at the same time,
with reduced constraints on the generative possibilities of naturalistic conversational com-
munication. A limitation of this approach is that the study is not necessarily targeted to a
focused set of predictions where the manipulations allow clear-cut causal claims. Although
this study was originally designed to allow the analyses that we have reported, the results
are only correlational in nature. Future work will need to systematically manipulate the need
for precise information sharing to evaluate its impact on alignment. It will also need to bet-
ter account for a range of task goals and team members’ individual differences. And more
precise measures of linguistic alignment are necessary that go beyond immediate turn-taking.
However, it is also necessary that knowledge be advanced in more naturalistic and complex
problem-solving scenarios. Although this introduces new challenges, it will provide a
richer picture of how collaborative dialogue unfolds, and how it potentially can be
improved.
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Fusaroli, R., Rączaszek-Leonardi, J., & Tylén, K. (2014). Dialog as interpersonal synergy. New Ideas in Psychol-

ogy, 32, 147–157.
Galantucci, B., & Garrod, S. (2011). Experimental semiotics: A review. Frontiers in Human Neuroscience, 5,

1–15.
Galati, A., Dale, R., & Duran, N. (2019). Social and configural effects on the cognitive dynamics of perspective-

taking. Journal of Memory and Language, 104, 1–24.
Gallois, C., Ogay, T., & Giles, H. (2005). Communication accommodation theory: A look back and a look ahead.

In W. Gudykunst (Ed.), Theorizing about intercultural communication (pp. 121–148). Thousand Oaks, CA:
Sage

Garrod, S., & Anderson, A. (1987). Saying what you mean in dialogue: A study in conceptual and semantic
co-ordination. Cognition, 27, 187–218.

Garrod, S., Fay, N., Lee, J., Oberlander, J., & MacLeod, T. (2007). Foundations of representation: Where might
graphical symbol systems come from? Cognitive Science, 31, 961–987.

Günther, F., Rinaldi, L., & Marelli, M. (2019). Vector-space models of semantic representation from a cognitive
perspective: A discussion of common misconceptions. Perspectives on Psychological Science, 14, 1006–1033.

Gorman, J. C., & Wiltshire, T. J. (2024). A typology for the application of team coordination dynamics across
increasing levels of dynamic complexity. Human Factors, 66, 5–16.

Graesser, A. C., Fiore, S. M., Greiff, S., Andrews-Todd, J., Foltz, P. W., & Hesse, F. W. (2018). Advancing the
science of collaborative problem solving. Psychological Science in the Public Interest, 19, 59–92.

Gries, S. (2005). Syntactic priming: A corpus-based approach. Psycholinguistic Research, 34, 365–399.
Hadley, L., Naylor, G., & Hamilton, A. (2022). A review of theories and methods in the science of face-to-face

social interaction. Nature Reviews Psychology, 1, 42–54.



N. D. Duran, A. Paige, S. K. D’Mello / Cognitive Science 48 (2024) 29 of 35

Healey, P., Purver, M., & Howes, C. (2014). Divergence in dialogue. PLoS ONE, 9(6), e98598.
Heyselaar, E., & Segaert, K. (2019). Memory encoding of syntactic information involves domain-general atten-

tional resources: Evidence from dual-task studies. Quarterly Journal of Experimental Psychology, 72, 1285–
1296.

Horton, W., & Gerrig, R. (2005). The impact of memory demands on audience design during language production.
Cognition, 96, 127–142.

Howes, C., Healey, P., & Purver, M. (2010). Tracking lexical and syntactic alignment in conversation. In S. Ohls-
son, & R. Catrambone (Eds.), Proceedings of the 20th Annual Conference of the Cognitive Science Society (pp.
2004–2009).

Johnson-Glenberg, M., & Megowan-Romanowicz, C. (2017). Embodied science and mixed reality: How gesture
and motion capture affect physics education: Principles and implications. Cognitive Research: Principles and
Implications, 2, 1–28.

Kendrick, K. (2017). Using conversation analysis in the lab. Research on Language and Social Interaction, 50,
1–11.

Kumar, A. (2021). Semantic memory: A review of methods, models, and current challenges. Psychonomic Bulletin
& Review, 28, 40–80.

Levy, F., & Murnane, R. (2012). The new division of labor: How computers are creating the next job market.
New York: Princeton University Press.

Mahowald, K., James, A., Futrell, R., & Gibson, E. (2016). A meta-analysis of syntactic priming in language
production. Journal of Memory and Language, 91, 5–27.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and
phrases and their compositionality. In Advances in neural information processing systems (pp. 3111–3119).

Mills, G. (2014). Dialogue in joint activity: Complementarity, convergence and conventionalization. New Ideas in
Psychology, 32, 158–174.

Nolle, J., & Galantucci, B. (2023). Experimental semiotics: Past, present, and future. In A. García& A. Ibáñez
(Eds.), The Routledge Handbook of Semiosis and the Brain (pp. 1–16). New York: Routledge

Noppeney, U., & Price, C. J. (2004). An fMRI study of syntactic adaptation. Journal of Cognitive Neuroscience,
16, 702–713.

Obhi, S. S., & Cross, E. S. (2016). Shared representations: Sensorimotor foundations of social life. Cambridge
University Press.

Pickering, M., & Garrod, S. (2004). Toward a mechanistic psychology of dialogue. Behavioral and Brain Sciences,
27, 169–226.

Pickering, M. J., & Branigan, H. P. (1998). The representation of verbs: Evidence from syntactic priming in
language production. Journal of Memory and Language, 39, 633–651.
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Appendix A: Comparison of turns and duration for levels by outcome
Linear mixed-effects models were used to assess the overall duration of levels and number of
turns with level outcome (gold, silver, and none) as the fixed effect, with a random effect for
team. The overall effect for level outcome was statistically significant based on a likelihood
ratio test between versions of the model with and without the fixed effect, duration: χ2(2) =
55.951, p<.001; and number of turns: χ2(2) = 30.726, p<.001. Planned contrasts between
outcome types are shown in Tables A.1 and A.2.

Table A.1
Model results involving duration of levels based on gold, silver, and none outcomes

Contrast Estimate SE t p

None—Silver 56.4 16.9 3.346 .0009
None—Gold 161.3 21.7 7.416 <.0001
Silver—Gold 104.8 22.6 4.642 <.0001

Table A.2
Model results involving number of turns in levels based on gold, silver, and none outcomes

Contrast Estimate SE t p

None—Silver 5.84 2.94 1.988 .0472
None—Gold 20.97 3.79 5.532 <.0001
Silver—Gold 15.13 3.92 3.858 .0001
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Table B.2
Tests to compare whether models with or without random effects structure (GLMM vs. GLM) are a better fit to
the data

Binomial logistic Gamma Binomial logistic Gamma Linear

GLMM GLM GLMM GLM GLMM GLM GLMM GLM LME LM
dLogLik 18.6 0 95.4 0 28.6 0 48 0 6.9 0
dAIC 0 31.9 0 184.7 0 51.2 0 90 0 7.8
df 12 9 13 10 12 9 13 10 13 10

Note. Nonzero values indicate the model with the higher log-likelihood/AIC.
Abbreviations: dLogLik, difference of log-likelihoods; dAIC, difference of AIC.
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Appendix C: Mock conversations (baseline)

C.1Overall amount of alignment between real and mock conversations
Table C.1 shows the average amount of lexical, syntactic, and semantic alignment between
real and mock conversations collapsed across temporal ordering of turns and rounds.

C.2Presence: Lexical and syntactic alignment
Tables C.2 and C.3 show the results for the models based on binomial component of the

hurdle model (using the logit link) that predict the presence of alignment. The two main
predictors “Utterance order” and “Block” are statistically nonsignificant for both lexical and
syntactic alignment.

C.3Magnitude: Lexical and syntactic alignment
Tables C.4 and C.5 show the results for the models based on gamma-distributed component

of the hurdle model that predict mean (i.e., magnitude) of alignment. The two main predictors
“Utterance order” and “Block” were statistically nonsignificant for both lexical and syntac-
tic alignment.

C.4Magnitude: Semantic alignment
Table C.6 shows the results for the models based on a linear mixed-effects regression to

evaluate the mean (i.e., magnitude) of alignment. The two main predictors “Utterance order”
and “Block” were statistically nonsignificant for semantic alignment.

Table C.1
Mean amount of alignment for each linguistic type (standard deviations in parenthesis)

Real Mock

Lexical 0.157 (0.174) 0.115 (0.137)
Syntax 0.06 (0.086) 0.057 (0.062)
Semantic 0.592 (0.17) 0.571 (0.167)

Note. Nonzero values indicate the model with the higher log-likelihood/AIC.
Abbreviations: dLogLik, difference of log-likelihoods; dAIC, difference of AIC.

Table C.2
Predicting the presence of lexical alignment based on mock conversations

Parameter log-odds SE 95% CI z p

Utterance order −0.04 0.039 [−0.12, 0.04] −1.025 .305
Block [linear trend] −0.025 0.023 [−0.07, 0.02] −1.123 .261
Role [controller] 0.058 0.026 [ 0.01, 0.11] 2.257 .024
Level start time 0.014 0.013 [−0.01, 0.04] 1.006 .314
Level duration 0.032 0.015 [ 0.00, 0.06] 2.113 .035
Utterance length 0.956 0.018 [ 0.92, 0.99] 52.961 <.001
Concept [PoT] 0.011 0.028 [−0.04, 0.07] 0.382 .702
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Table C.3
Predicting the presence of syntactic alignment based on mock conversations

Parameter log-odds SE 95% CI z p

Utterance order −0.051 0.042 [−0.13, 0.03] −1.223 .221
Block [linear trend] −0.021 0.026 [−0.07, 0.03] −0.816 .414
Role [controller] −0.079 0.033 [−0.14, −0.02] −2.421 .015
Level start time 0.046 0.014 [ 0.02, 0.07] 3.224 .001
Level duration 0.13 0.017 [ 0.10, 0.16] 7.695 <.001
Utterance length 0.103 0.014 [ 0.08, 0.13] 7.601 <.001
Concept [PoT] −0.012 0.032 [−0.08, 0.05] −0.39 .697

Table C.4
Predicting the magnitude of lexical alignment based on mock conversations

Parameter Coefficient SE 95% CI t p

Utterance order 0.022 0.014 [−0.01, 0.05] 1.591 .112
Block [linear trend] 0.008 0.009 [−0.01, 0.02] 0.852 .394
Role [controller] −0.042 0.011 [−0.06, −0.02] −3.696 <.001
Level start time 0.007 0.005 [ 0.00, 0.02] 1.338 .181
Level duration 0.005 0.006 [−0.01, 0.02] 0.815 .415
Utterance length 0.004 0.004 [ 0.00, 0.01] 1.137 .255
Concept [PoT] 0.007 0.011 [−0.01, 0.03] 0.665 .506

Table C.5
Predicting the magnitude of syntactic alignment based on mock conversations

Parameter Coefficient SE 95% CI t p

Utterance order −0.012 0.015 [−0.04, 0.02] −0.792 .428
Block [linear trend] −0.011 0.01 [−0.03, 0.01] −1.154 .248
Role [controller] −0.083 0.013 [−0.11, −0.06] −6.341 <.001
Level start time 0.01 0.005 [ 0.00, 0.02] 1.84 .066
Level duration 0.017 0.006 [ 0.00, 0.03] 2.675 .007
Utterance length 0.017 0.005 [ 0.01, 0.03] 3.769 <.001
Concept [PoT] −0.003 0.012 [−0.03, 0.02] −0.236 .813

Table C.6
Semantic

Parameter Coefficient SE 95% CI t p

Utterance order 5.63E−04 0.003 [−0.005, 0.006] 0.19 .849
Block [linear trend] 7.52E−04 0.002 [−0.003, 0.004] 0.419 .675
Role [controller] 0.012 0.002 [ 0.008, 0.017] 5.583 <.001
Level start time −4.62E−04 0.001 [−0.002, 0.002] −0.453 .65
Level duration 7.28E−04 0.001 [−0.001, 0.003] 0.66 .509
Utterance length 0.057 8.81E−04 [ 0.055, 0.058] 64.4 <.001
Concept [PoT] 0.003 0.002 [−0.001, 0.007] 1.288 .198
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