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Abstract
We present CPSCoach 2.0, an automated system that provides feedback, instructional
scaffolding, and practice to help individuals improve three collaborative problem-
solving (CPS) skills drawn from a theoretical CPS framework: construction of shared
knowledge, negotiation/coordination, and maintaining team function. CPSCoach 2.0
was developed and tested in the context of computer-mediated collaboration (video
conferencing) with an educational game. It automatically analyzes users’ speech dur-
ing a round of collaborative gameplay to provide personalized feedback and to select a
target CPS skill for improvement. After multiple cycles of iterative testing and refine-
ment, we tested CPSCoach 2.0 in a user study where 21 dyads (n � 42) completed
four rounds of feedback and scaffolding embedded within five rounds of game-play
in a single session. Using a quasi-experimental matching procedure, we found that
the use of CPSCoach 2.0 was associated with improvement in CPS skill development
compared to matched controls. Further, users found the automated feedback to be
moderately accurate and had positive perceptions of the system, and these impres-
sions were stronger for those who received higher scores overall. Results demonstrate
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the use of automated feedback and instructional scaffolds to support the development
of CPS skills.

Keywords Collaborative problem-solving · Automated feedback · Educational
technology · User study · Computer-supported collaborative work

1 Introduction

What does planning the Artemis 1 mission to the moon, fighting wildfires, scoring
the winning goal at the world cup final, and coordinating dinner reservations with
fussy eaters have in common? They all involve multiple individuals coming together
to identify the steps needed to solve a problem by transforming a given state to a goal
state, a process called collaborative problem-solving (CPS) (Fiore et al. 2018). CPS
is recognized as a critical twenty-first-century skill in the future workplace and work-
force, which is increasingly technologically rich, distributed, and diverse. CPS entails
both analytical problem-solving skills and social interpersonal skills. For example,
teammates must engage in a number of coordination processes, such as establishing
common ground (Graesser et al. 2018), maintaining a joint conception of the prob-
lem (Roschelle and Teasley 1995; Graesser et al. 2018), sharing ideas (Graesser et al.
2018), forming a plan (Griffin et al. 2012a; Graesser et al. 2018), negotiating among
multiple alternatives (Andrews-Todd and Forsyth 2020), and maintaining a positive
team dynamic (Sun et al. 2020).

In theory, teams that exhibit these skills should demonstrate process gain—i.e.,
superior performance that exceeds the joint abilities of the individual team mem-
bers (Laughlin et al. 1975, 2006; Laughlin and Ellis 1986). The reality, however, is
quite different. Decades of research on small group teams have indicated that teams
consistently fail to live up to expectations (see reviews (Steiner 1972; Hill 1982;
Kerr and Tindale 2004)) and experience process loss instead of process gain. Possi-
ble causes include coordination losses, such as production blocking during collective
ideation (Nijstad et al. 2003), overemphasis on shared vs. individual knowledge (the
common-knowledge effect (Gigone and Hastie 1993)), or group-think (Janis 1982)
when individual members converge to the dominant view. There are also motiva-
tion losses, such as social-loafing (Kerr 1983; Karau and Williams 1993), evaluation
apprehension (Diehl and Stroebe 1987), and free-rider effects (Kerr and Bruun 1983).

It is perhaps unsurprising that teams fail to achieve their potential, because they
do not have the requisite skills. Recognizing the importance of CPS, in 2015, the
Programme for International Student Assessment (PISA) conducted an international
CPS assessment among 15-year-old students in 52 countries and regions. They found
that only 10% of countries scored at the highest level involving solving complicated
problems that require overcoming obstacles and resolving conflict. Even more con-
cerning, less than 30% of students demonstrated success on the lowest complexity
problems (OECD 2015a), resulting in a conclusion of a “global deficit in acquiring
collaboration competencies” (Fiore et al. 2018b).

In a series of influential reports (Fiore et al. 2018; Graesser et al. 2018), the authors
argue that one reason for such deficits is a dearth of training on CPS skills. According
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to employers, college graduates are ill-equipped for collaborating in the twenty-first-
century workplace. As a remedy to this problem, education researchers have called for
curricula that focus on developing CPS competencies. This call has remained largely
unrealized, as there is little dedicated instruction focused on CPS. Instead, students
are expected to master CPS competencies by engaging in small-group collaborations
and project-focused teams, where the only guidance and evaluation they receive are
on domain knowledge and project outcomes. The assumption that these skills will
be learned in some indirect way is faulty. Imagine if math and science were taught
this way. To learn these skills, it is necessary to have direct focused instruction and
feedback on CPS.

Lastly, whereas much of the classic research on CPS has occurred in face-to-face
collaboration (Kerr and Tindale 2004), CPS increasingly occurs in remote, computer-
mediated settings, as teams are more distributed (Schulze and Krumm 2017). The
COVID-19 pandemic has made the shift to remote work more common, with early
reports estimating that approximately 50% of pre-pandemic workers are now doing
their jobs from home (Brynjolfsson et al. 2020). CPS is already difficult, and commu-
nication barriers inherent to remote work make it even harder (Schulze and Krumm
2017). Social signals are crucial to interpersonal communication, and they aremuted or
non-existent in virtual interactions (Schulze and Krumm 2017; Alterman and Harsch
2017). Poor audio quality, obstructed visual cues, and lagging signals limit the effec-
tiveness of virtual communication. For example, eye gaze can help regulate turn-taking
dynamics (Kendon 1967), yet this signal is suppressed in modern video conferencing
interfaces (Vrzakova et al. 2020). Deficiencies in social cues impairs team coordi-
nation, communication, cohesion, trust, and even performance (Schulze and Krumm
2017; Virtaneva et al. 2021).

Taken together, there is an ever-increasing prevalence and importance of CPS, yet
a conspicuous absence of educational pathways to developing CPS proficiency. This
creates an urgent need for scalable solutions for CPS training and mastery especially
in remote settings. Accordingly, we propose CPSCoach 2.0, an intelligent system that
provides feedback and instructional scaffolds to help people practice and improve
CPS skills. CPSCoach is a major refinement of an earlier prototype system (Stewart
et al. 2023) as detailed in Sect. 1.2. We present the design and implementation of
CPSCoach 2.0 followed by a study to investigate whether the use of CPSCoach 2.0 is
associated with improvement in corresponding skills and to examine user perceptions
of the system.

1.1 Background and related work

1.1.1 Collaborative problem-solving proficiency

CPS occurs when two or more people coordinate to solve a problem (Roschelle
and Teasley 1995, 2015). It involves a myriad of skills (Nelson 1999; Hesse et al.
2015; Cukurova et al. 2018). For example, teammates need to create a collaborative
environment by establishing common ground (Roschelle and Teasley 1995, 2015),
understanding their teammates’ perspectives (Griffin et al. 2012a; Hesse et al. 2015),
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assigning roles according to team member strengths (Griffin et al. 2012a; Hesse et al.
2015), monitoring for breakdowns in communication (Roschelle and Teasley 1995,
2015), and negotiating for compromise (Griffin et al. 2012a; Hesse et al. 2015). Teams
must also engage in effective problem-solving processes—theymust analyze the prob-
lem and its constraints (Griffin et al. 2012a; Hesse et al. 2015;Webb and Gibson 2015;
Graesser et al. 2018), strategize for how to achieve the goal (Griffin et al. 2012a; Hesse
et al. 2015), develop and execute solution plans (Griffin et al. 2012a; Hesse et al. 2015),
reflect on results (Webb and Gibson 2015; Graesser et al. 2018), and iteratively refine
plans (Webb and Gibson 2015; Graesser et al. 2018). Thus, both task- and social-
focused norms are important, and people need to master a number of cognitive, social,
and metacognitive skills to successfully engage in CPS. Researchers have organized
collections of these skills into various frameworks, such as the PISA CPS Framework
(OECD 2015b), the ATC21S framework (Friedrich et al. 2015), the CPS Ontology
(Andrews-Todd and Forsyth 2020), and the Generalized CPS Framework (Sun et al.
2022). These frameworks provide a theoretical basis for the assessment and develop-
ment of CPS skills.

1.1.2 Assessing andmodeling collaborative problem-solving

There is a vast literature on modeling collaborations. One line of work examines low-
level behaviors, such as visual focus of attention (Otsuka et al. 2018), turn-taking
(de Kok and Heylen 2009; Dielmann et al. 2010; Jokinen et al. 2013), and behavioral
coordination and synchrony (Fusaroli et al. 2014;Krafft et al. 2016; Stewart et al. 2018;
Eloy et al. 2019; Amon et al. 2019). At a higher level, researchers have also identified
important socio-cognitive processes, such as rapport-building (Sinha andCassell 2015;
Müller et al. 2018), speaker dominance and influence (Aran and Gatica-Perez 2010;
Nihei et al. 2014), and emergent leadership (Sanchez-Cortes et al. 2010; Mercier et al.
2014; Beyan et al. 2016). Some have examined modeling of CPS outcomes, such as
task performance (Murray and Oertel 2018; Chopade et al. 2019; Subburaj et al. 2020)
and learning educational content after engaging in CPS (Stewart and D’Mello 2018;
Olsen et al. 2020).

Most relevant to our work is research on assessment and computational modeling of
CPS skills. One approach is to leverage the aboveCPS theoretical frameworks to create
assessments of CPS. For example, in the large-scale PISA CPS assessment, students
interacted with a computer agent by choosing responses from pre-defined options
designed to elicit CPS skills based on the PISA CPS framework (OECD 2015b).
Although this approach allows for precision of CPS skill assessment at scale, its
ecological validity is limited in that communications are constrained to pre-specified
responses. Others addressed this limitation by using log data from a CPS virtual
environment to infer a mapping between student actions in the environment and levels
of CPS proficiency (low and high) (Scoular and Care 2020). They found that the
identified behaviors were consistent across students, tasks, and assessments. However,
the click stream type of the interaction does not resemble rich, naturalistic social
interactions.

As a step toward supporting more naturalistic communications, several researchers
have focused on modeling CPS based on chat communications during collaborative
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tasks (Michael et al. 2016; Stephen et al. 2017; Dowell et al. 2019). For example,
researchers have used network analysis techniques to understand how individual con-
tributions are situated in interactive, interdependent, temporal discourse (Swiecki et al.
2020), latent semantic analysis coupled with clustering to understand how emergent
roles are related to CPS outcomes and skills (Dowell et al. 2020), and n-grams to
predict CPS behaviors from chat communications (Jiangang et al. 2017). However,
CPS assessment from open-ended spoken discourse still remains elusive with few
exceptions (Stewart et al. 2019; Pugh et al. 2022), ostensibly due to challenges with
automatic speech recognition especially in real-world contexts (Pugh et al. 2021;
Southwell et al. 2022). Lastly, there have been some efforts toward multimodal mod-
eling of CPS, including the use of video, acoustics, and features of the task (Cukurova
et al. 2020; Stewart et al. 2021), but the verbal modality tends to outperform nonverbal
modalities in predicting CPS skills given the emphasis of spoken communication in
remote CPS (Stewart et al. 2021). Nonverbal signals might be more useful for other
outcomes of interest like success at the task or users’ subjective perceptions of the
interaction (Vrzakova et al. 2019; Shree Krishna et al. 2020).

1.1.3 Intelligent systems to support collaboration

Researchers in the fields of computer-supported collaborative work (CSCW) and
computer-supported collaborative learning (CSCL) have developed and evaluated sev-
eral systems that support collaborations. Many are task-specific, in that they augment
team processes tomore effectivelymove them toward the end-goal. For example, some
interfaces aim to enhance team communication and code sharing in programming tasks
(Davor et al. 2005) or support collaborative information seeking by improving group
coordination (Hong et al. 2019). Systems have also been built to monitor the unfolding
collaboration and automate tasks to increase productivity, such as automated discus-
sion summarization (Gutwin et al. 2017; Tian et al. 2021) and task list generation
(McGregor and Tang 2017).

Most closely related to ourwork are systems that emphasize awareness of individual
behaviors in collaborative interactions for reflection (Kori et al. 2014). In this litera-
ture, machine-observable behaviors are usually synthesized into meaningful metrics
and displayed to the user. For example, collaborator speech has been used to compute
metrics of turn-taking behaviors (e.g., verbal participation, interruptions) (Calacci et al.
2016; Faucett et al. 2017), which are then visualized in real time. As another example,
visualizations of shared eye gaze among teammates have been used to support shared
awareness (Schlösser et al. 2018; Kütt et al. 2020), in turn increasing task performance
and decreasing cognitive workload (Kütt et al. 2020). In the context of remote meet-
ings,MeetingCoach automatically analyzes users’ audiovisual data, extracts measures
such as tone, turn taking, sentiment., and displays these to the user along with sug-
gestions (e.g., “try varying your pitch”) via an interactive dashboard (Samrose et al.
2021). A user study indicated that participants reported that MeetingCoach helped
improve their awareness of meeting dynamics. Together, these works demonstrate
how visualization of behaviors can potentially prompt teammates to engage in more
effective collaborative behaviors. However, to our knowledge, researchers have yet to
directly address improvement of complex CPS skills.
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1.2 Novelty, contributions, and research questions

We identified three gaps from our review of the literature. First, researchers have
developed theoreticalCPS frameworks for the purpose of assessing this critical twenty-
first-century skill. However, complementary frameworks and guidance to help improve
CPS skills are largely missing despite a critical need (Fiore et al. 2018). Second,
there is a considerable body of research on modeling CPS and related collaborative
behaviors, but these models have yet to be integrated within intervention systems that
support the development of CPS skills. Further, computational models of CPS have
focused on interactions via chats and interface logs (e.g., (Stephen et al. 2017; Stoeffler
et al. 2018)), but with some exceptions (e.g., (Stewart et al. 2019; Pugh et al. 2021,
2022)) have yet to broadly embrace the complexity of open-ended spoken collaborative
discourse. Third, whereas there has been considerable work in the CSCW and CSCL
communities on improving collaboration outcomes, the focus has been on supporting
specific tasks or providing feedback on communicative behaviors (e.g., turn taking,
prosody, sentiment). There have yet to be systems that support the development of
complex CPS skills.

We addressed these gaps by designing and testing CPSCoach 2.0, an intelligent,
personalized system that aims to help users improve their CPS proficiency in remote
collaborations via video conferencing. CPSCoach 2.0 has two components: (1) a feed-
back system that uses speech and language processing with deep machine learning to
automatically measure high-level CPS skills based during remote CPS and (2) and an
intervention system that provides instructional scaffolds to help users’ improve tar-
geted CPS skills personalized to individual users (Fig. 1). The CPS assessments and
interventions are grounded in a validated CPS theoretical framework (e.g., (OECD
2015b; Andrews-Todd and Forsyth 2020)) and evidence-based principles from the
cognitive science of learning (Bransford et al. 2000; NASEM 2018). Both compo-
nents are implemented in a collaborative environment where people engage in CPS to
demonstrate and practice their skills.

The present study makes two contributions. First, we discuss the design and imple-
mentation of CPSCoach 2.0, highlighting general design considerations that can be

Fig. 1 High-level overview of the CPSCoach 2.0 feedback (middle) & intervention system (right) situated
within the collaborative environment (left)
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applicable to similar intelligent systems aimed at helping users develop CPS skills.
Second, we present a quasi-experimental study that investigates two research ques-
tions (RQ1): Are interactions with CPSCoach 2.0 associated with improvements in
CPS skills?; and (RQ2): What are users subjective perceptions of CPSCoach 2.0 and
what factors predict these perceptions?

CPSCoach2.0 builds off an earlier prototype systemcalledCPSCoach (Stewart et al.
2023), which also provided automated feedback on CPS skills using the samemachine
learning models (i.e., item #1 was the same). However, CPSCoach 2.0 includes a new
and elaborated intervention system (item #2) than CPSCoach, which has three salient
differences. First, CPSCoach 2.0 uses automated feedback to personalize the inter-
ventions to individual users by selecting one target CPS skill to focus on, whereas the
original interventions targeted all three skills. Second, the CPSCoach 2.0 interventions
greatly differ from those used previously in terms of depth, level of interactivity, and
length. Specifically, whereas the former interventions were passive (interaction was
limited to reading and viewing videos), the CPSCoach 2.0 interventions incorporate
constructive and generative activities with feedback and additional opportunities for
practice. Third, the CPSCoach 2.0 interventions are dynamic, changing each time,
whereas the former interventions were static, resulting in considerable disengagement
after the novelty wore off. Further, several insights learned from a previous usability
study with the initial system were incorporated into CPSCoach 2.0. Lastly, the previ-
ous user study1 (Stewart et al. 2023) did not investigate whether CPSCoach improved
CPS skills (RQ1), which we do here for the first time with CPSCoach 2.0. With the
revised intervention design, research addressing RQ2 (user perceptions) is also novel.

2 Feedback and intervention design of CPSCoach 2.0

The present CPS feedback and intervention system is intended for any number of
contexts; however, to ground its operationalization we instantiate it within a particular
collaborative problem-solving environment: an engaging two-dimensional educational
game called Physics Playground.

2.1 Physics playground: current CPS environment

Physics Playground is designed to introduce basic Newtonian physics concepts (e.g.,
Newton’s laws, energy transfer, and properties of torque) to students (Miguel et al.
2014; Bosch et al. 2015; Shute et al. 2021a, b). The game is composed ofmultiple game
levels organized as “playgrounds” that players can freely navigate. The objective of the
game is to draw simple machines (i.e., ramps, levers, pendulums, and springboards)
within a level to navigate a green ball to a red balloon while avoiding pre-existing
obstacles. Everything in the game obeys the laws of Physics. Players can restart, exit,
or change levels at any time, aswell as view a tutorial on gamemechanics. A teamearns

1 The only publication on CPSCoach includes a short conference paper (Stewart et al. 2023). The present
paper reports results on a new study with a substantially revised system.
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a gold trophy when they successfully solve a level using fewer objects. A successful
solution that uses more objects earns a silver trophy.

The game can be played both individually or collaboratively. In the latter case,
one player—designated the Controller—can control interaction within the game. This
person’s screen is sharedwith the other players – calledContributors—whodiscuss and
contribute to the solution. Collaborative gameplay can occur face-to-face or via video
conferencing. Figure 1 (left) shows a team using a lever (pre-existing in the game) and
a weight (drawn by team) to solve a level. This team was virtually collaborating over
zoom with video and audio enabled.

2.2 Automated feedback generation

The first component of our system automatically assesses CPS skills. We used a
validated theoretical framework of CPS to identify focal skills, followed by a deep
text classification approach to computationally model these skills.

2.2.1 CPS framework

The framework defines three facets (i.e., high-level skills) that comprise CPS: (1)
construction of shared knowledge (or shared knowledge construction) occurs when
teammates share ideas and expertise with each other to bring about a collective,
broad understanding of the problem space; (2) negotiation/coordination is a process
of iteratively developing and executing a particular solution, and revising it as neces-
sary; (3) maintaining team function occurs when teammates create a positive group
dynamic by eliciting each other’s perspectives, providing encouragement, and proac-
tively contributing to the team’s success. Each facet is comprised of three positive
verbal indicators, which are observable behaviors used to assess the corresponding
facet (Table 1). The framework also includes some negative indicators (e.g., making
fun of others); however, we only focused on the positive indicators here.

The framework was validated in two studies using two datasets: one of middle
school students playing an educational game face-to-face, and another with college
students engaging in a visual programming task over a videoconference (Sun et al.
2020, 2022). Together the three facets work in unison to facilitate effective collabora-
tion, and indicators from all three facets have been linked to successful CPS outcomes
(Sun et al. 2022; Zhou et al. 2022). Whereas nonverbal indicators do play a role in
CPS, the verbal indicators tend to dominate in remote collaborations (Stewart et al.
2021), making the framework very relevant for the present context.

2.2.2 Data to train computational models

We used a training dataset where 94 triads collaboratively played Physics Playground
for three 15-min blocks in one of two research labs. Teammates were positioned at
separate computer workstations, and communicated over videoconference (Zoom).
Control of Physics Playground switched each block, so that each person in the triad
controlled Physics Playground for one block. We recorded separate audio streams for
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Table 1 CPS framework with facets, positive verbal indicators, and examples from real teams playing
Physics Playground

Facet or skill Indicator Human transcribed example

Construction of Shared
Knowledge

Proposing Specific Solutions Also draw the two pivots a little
higher up on the dolphin

Talking about the givens and
constraints of the task

So if you want to move yeah so
you can just click on the ball,
and that will be making the
ball move to the right

Confirming understanding by
asking questions/paraphrasing

So what should we attach it to
then?

Negotiation/ Coordination Providing reasons to support a
solution

I guess while you’re at it, do that
on the other end too, so that it
doesn’t like roll off.

Responding to others’
questions/ideas

Right. Yeah, right here

Talking about results There’s not enough momentum
for it

Maintaining Team Function Asking if others have suggestions Like utilizing what is already on
the screen, how would we be
able to attach something to
stop that ball?

Complimenting or encouraging
others

Great idea

Giving instructions Yeah and then just like do that,
and make a little hook at the
end

each teammate, which were automatically transcribed using the IBM Watson auto-
mated transcription service. In total, there were 87,943 utterances across 94 triads.

Three expert humans were trained to code the utterances for the presence of each
verbal indicator. Coderswatched videos of the collaborations, alongside the automated
transcripts and counted the number of times each indicator occurred in an utterance, but
because the same indicator rarely (< 1%) occurred twice per utterance, we binarized
indicator counts. Coder agreement on the indicators ranged from 0.88 to 1.00 (Gwet’s
AC1) on 10, 90-s video samples consisting of 406 utterances. After training, videos
were randomly assigned for independent coding. We adopted a thin slicing approach
(Olsen and Finkelstein 2017) where a random 90 s was coded from the first, second,
and third five minutes of a 15-min block (i.e., 30% of the data was coded, or 90 s
× 3). In all, 27,019 utterances were coded across all teams and blocks. A total of
22% of the utterances were coded for construction of shared knowledge, 13% for
negotiation/coordination, and 9% for maintaining team function.
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2.2.3 Training and validating computational models

We used the above dataset to develop computational models to predict binary codes
for the three CPS facets from the automated transcriptions. We specifically use one
modern deep learning architecture called transformers (Vaswani et al. 2017) in a trans-
fer (machine) learning setting where a model trained on one dataset/task is adapted
to another (Pan and Yang 2010). This entails two steps: pretraining and fine-tuning.
During pretraining, the transformer uses large amounts (i.e., gigabytes) of text to learn
the meanings of words from their context via specific tasks. For example, the language
modeling task entails predicting the next word from the previous words (Brown et al.,
2020), whereas masked language modeling involves predicting a word from both its
left and its right sequence of words (Devlin et al. 2018). Training on these tasks enables
the model to obtain a representation of the contextual meaning of words, which serves
as a starting point for subsequent fine-tuning. Here, the model is augmented to include
a task-specific (CPS classification in our case) output layer and then tuned (parameters
are updated) on small amounts of task-specific data (the 27,019 annotated utterances).

We used the Bidirectional Encoder Representations from Transformers (BERT)
model (Devlin et al. 2018), which was state of the art when the models were initially
developed and validated (i.e., in 2018–2019). We started with the ‘bert-base-uncased’
pre-trained model weights from huggingface.co and then fine-tuned it on our labeled
dataset for four epochs, using hyper-parameters basedon recommendations from (Wolf
et al. 2019) (e.g., fine-tuning over four epochs, batch size � 32, sequences padded or
truncated at 300 words). The BERT model outputs a probability that an utterance is a
positive example of each facet.

We used team-level tenfold cross-validation such that all utterances from a team
were in the training set, or testing set, but never both; this is critical for generalizability
to new teams. The cross-validation process involved training a model on data from
90% of teams, then evaluating its predictive accuracy on a test set (which contains
data from the 10% of teams withheld during training). This was repeated ten times,
such that every team appeared in the test set exactly once. Finally, test set predictions
from each of the ten folds were aggregated to compute accuracy using the receiver
operating characteristic curve (AUROC). Thismetric considers the true-positive/false-
positive tradeoff across various classification thresholds, rather than forcing a single
binary prediction. We achieved cross-validated AUROC values of 0.88, 0.83, and
0.82 for construction of shared knowledge, negotiation/coordination, and maintaining
team function, respectively (chance � 0.5). This metric indicates good classification
accuracy and generalizability to new teams in a similar context.

This general modeling approach has been shown to generalize to a different CPS
domain (Pugh et al. 2022). It is also moderately robust to speech recognition errors
(Southwell et al. 2022), for example achieving AUROCs of 0.80 using noisy speech
recognition data compared to 0.91 for human transcripts (Pugh et al. 2021).

2.2.4 Model deployment: generating feedback scores in near-real time

Once cross-validated accuracy was established (see above), we retrained (i.e., fine-
tuned) a model on all the data (i.e., 27,019 instances preserving the hyper-parameters
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noted above) and utilized this deployment model for near-real-time assessment in the
current study. The deployment model operates at the utterance level (i.e., predicts the
probability of three CPS facets for each individual utterance). However, our goal is
to provide feedback at the level of a block or round of gameplay comprising multiple
utterances. Therefore, we generated an aggregate score for each facet by averaging the
utterance-level probabilities in the block/round. To address outliers, we winsorized
the top and bottom 1.25% of values (i.e., replacing values outside of these bounds
with the closest value within each bound). Because there were differences in scores
across the three facets,wenorm-referenced the aggregated round-level proportions into
percentile scores (i.e., using the cumulative distribution function for the corresponding
facet) from the reference (i.e., training) dataset. Further, since there were differences in
facet scores between Controllers and Contributors, we computed the percentile score
separately for two roles, resulting in six distributions (3 facets× 2 roles). This ensured
equivalence of scores relative to differences across facets and roles (e.g., different raw
mean scores for all three facets and roles would yield the same percentile score of
50%).

Participants completed the study from their own personal spaces using their own
devices (due to pandemic restrictions Sect. 3), which limited researcher control on soft-
ware and hardware setup. Therefore, processing of audio to generate feedback scores
was semi-automated in that each participant’s audio stream was manually recorded
using Zoom during the collaborative CPS interactions and submitted to the automated
feedback generating pipeline. Because there were latencies in this pipeline, only the
first seven minutes of audio from ten-minute blocks of gameplay was recorded and
submitted to the processing pipeline. This way, scores were ready for feedback and
intervention soon after the block had ended.

2.3 Intervention design

2.3.1 Design principles

The design of the feedback and intervention systems was guided by a number of
principles from the cognitive science of learning (Bransford et al. 2000; NASEM
2018). Briefly, these include:

Objective feedback. This principle highlights the importance of providing objec-
tive feedback as a necessary condition for learning (Azevedo and Bernard 1995;
Bransford et al. 2000). Feedback plays a foundational role in the intervention by
providing the starting point to launch subsequent interventions aimed at improving
CPS skills.

Formative feedback. This principle highlights the virtue of feedback that is for-
mative or aimed towards improvement rather than feedback that is evaluative (Shute
2008). Accordingly, the feedback provided is framed as an opportunity to improve, as
opposed to a means to demonstrate competence (Elliot and McGregor 2001). For this
reason, feedback is always individualized and provided to users privately rather than
collectively.
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Observational learning. Theories of observational or social learning posit that
people learn vicariously through observing examples of behaviors in others (Chi et al.
2001). Accordingly, the intervention provides users with numerous examples of CPS
from real teams with prompts to promote reflection, comparison, and assessment.

ICAP (Interactive-constructive-active–passive) framework. According to this
theory (Chi andWylie 2014), learning activities that target interactive (e.g., explaining
to others) and constructive (e.g., generating a response) processes are more beneficial
than active (e.g., taking verbatim notes) and passive (e.g., silently reading) ones. Thus,
the intervention is designed to engender constructive and interactive processes via
information retrieval, error correction, comparing and contrasting, and generating
open-ended responses.

Instructional scaffolding. Lastly, the intervention is designed to scaffold students
toward mastery in incremental steps (Smagorinsky 2018). This scaffolding is imple-
mented by initially providing direct instruction and examples on individual behaviors
that comprise the CPS skills, followed by increasing mastery to consider multiple
behaviors and skills, followed by asking users to construct explanations rather than
providing corrective feedback and opportunities for revised responses.

2.3.2 Reconfigurable and reusable intervention components

The intervention content was designed as a set of reusable components that could be
assembled to create a variety of learning experiences alignedwith the above principles.
It is intended to be interspersed within subsequent rounds of gameplay where users’
reflect on the automated feedback and learn strategies to improve their CPS skills.

Feedback Display. This component simply displays users’ CPS performance
(based on prior interactions) in an easy-to-understand fashion. It displays scores as
percentages (see Sect. 2.2.4) alongwith accompanyingmedia icons for each facet. The
three facets were renamed in order to facilitate easier interpretation of the scores as
follows: Constructing SharedKnowledgewas renamed “Sharing Ideas andExpertise”;
Negotiation/Coordination was called “Exploring Solutions Together”; and Maintain-
ing Team Function was renamed “Creating a Positive Team Environment.” This
component affords display of all three scores (Fig. 2A) or a score for a selected facet
(Fig. 2B).

Facet and Indicator Overview. The purpose of this component is to introduce
participants to the facet selected for feedback (called target facet). Accordingly, it
identifies the selected facet (Fig. 3A), provides a short discussion on the importance
of the facet for supporting effective CPS (Fig. 3B), followed by descriptions of the
three indicators that comprise the facet along with actionable strategies to help users
learn how to utilize each indicator (Fig. 3C). Information pertaining to the facet and
its indicators was designed to be presented as an initial exposure on a single page
(Fig. 3C) or as a reminder with one indicator per page (not shown here) (Fig. 4).

Indicator Identification (Multiple-choice response). This component provides users
with an opportunity to identify specific CPS indicators from example CPS sessions.
Users are presented with a short video (30 s on average) of a team collaboratively
solving a Physics Playground level (see Fig. 1—left), followed by a transcript of
the spoken discourse, and a high-level description of the activity (i.e., to identify the
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Fig. 2 Screenshot of the Feedback Display screen

three indicators of the selected facet from the transcript) (Fig. 4A), which consists of
selecting an utterance (out of four utterances) from the transcript that best reflects a
particular indicator (Fig. 4B). They are given an opportunity to rewatch the video prior
to beginning the activity. If their response is correct, they receive positive feedback
and an explanation of the correct answer (Fig. 4C), else they receive negative feedback
with a hint (Fig. 4D). They are given a second opportunity to respond. If their second
response is correct, they are provided the correct feedback screen (Fig. 4C), but if it
is incorrect, they are again provided with the incorrect feedback screen, followed by
an explanation of the correct response (Fig. 4C). This process repeats for all three
indicators.

Fig. 3 Screenshots of the Facet and Indicator Overview screens

123



1100 S. K. D’Mello et al.

Fig. 4 Screenshots of the Indicator Identification task

Compare and Contrast. This activity aims at providing users with an opportunity
to compare and contrast effective use of CPS indicators across different hypothetical
individuals. Users are informed that they would read a transcript of three people
solving a level in Physics Playground who were generally good in demonstrating the
selected facet. They are further informed that their task is to identify the person who
was particularly adept at demonstrating behaviors (indicators) that map onto the facet
(Fig. 5A). Next, they are provided a synthesized transcript clearly demarking the turns
associatedwith each hypothetical individual (e.g., Anand,Keaton, andRoman). Below
the transcript, a grid-format matching question (Fig. 5B) asks users to identify which
of two hypothetical individuals (e.g., Anand and Roman) more aptly demonstrated
each of two indicators of the selected facts; users are not able to select the same
individual for both indicators. For incorrect responses, they receive negative feedback,
an opportunity to review the facet and indicator overview screen (Fig. 5C), and then
correct their response. A second incorrect response yields another feedback screen,
but this time they are informed that they will be moved on to another item and that
the correct answer will be displayed at the end. The second item asks them to contrast
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Fig. 5 Screenshots of the Compare & Contrast task

with another pair (e.g., Anand and Keaton) on two more indicators (one overlapping
with the previous item). The feedback, revision, feedback process is repeated for this
second item. Lastly, the correct answers are provided by displaying each individual,
the indicator for which they performed best, and a corresponding example from the
transcript (Fig. 5D).

Collaboration Coaching. The purpose of this activity is for users to integrate the
knowledge they have gained from the previous informational and scaffolding activities.
Users are asked towatch a video clip (40 s on average) of a real CPS team collaborating
in a Physics Playground level. They are prompted to adopt the role of a “collaboration
coach” (Fig. 6A) who is tasked with providing targeted CPS feedback for a designated
individual in the video clip (Fig. 6B). Users can review the video multiple times.
The response prompt asks users to provide feedback on one thing they did well and
one thing they could improve on. The open-ended feedback is targeted at the facet
level (rather than indicator level) with the aim of promoting an integrated response of
the three indicators underlying the facet (Fig. 6C). Responses less than 10 characters
in length receive an error message and an opportunity to retry. Otherwise, no other
feedback is provided.

2.3.3 Sequencing of intervention components

We assembled the intervention components to create two levels of scaffolds for each
facet with a round of collaborative game-play in-between each scaffold (Fig. 7). Scaf-
fold 1 (Initial exposure) was designed to provide an initial exposure to the facet and
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Fig. 6 Screenshots of the Collaboration Coaching task

Fig. 7 Sequence of components for intervention

its behavioral indicators. It consisted of the Facet and Indicator Overview activity to
provide an introduction, the Indicator Identification task as an easy step-by-step appli-
cation, followed by the more challenging Collaboration Coaching task as an initial
attempt to produce an integrated and constructive response at the facet level. Scaffold
2 (Complex practice) was designed to provide a second round of instruction and more
complex practice after users had an opportunity to apply learnings from Scaffold 1.
It included an abbreviated Indicator Identification task as a refresher of the content
(not shown here), followed by the Compare and Contrast task which involved multiple
indicators, again culminating with the Collaboration Coaching task (using the same
video but this time focusing on a different [from Scaffold 1] individual). Both scaf-
folds were proceeded by versions of the Feedback Display component (see Methods
below). At the end of Scaffolds 1 and 2, users are informed to focus on the targeted
feedback in subsequent gameplay and as a means to become a better collaborator.

The feedback was administered via Qualtrics surveys (6 total – 3 facets × 2 scaf-
folds), formatted as a series of guided, step-by-step web pages. There were filler pages
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between the various tasks and component pages to make the interaction more seam-
less and user-friendly. Back arrows were available to participants whenever a learning
concept was present (text, transcripts, video examples) but were disabled for pages
where responses were solicited to avoid repeated attempts.

Overall, the intervention content including instructionalmaterials, assessments, and
feedback was designed to be formative (i.e., focusing on improvement) rather than
evaluative. Thus, while the complexity of the intervention increased across scaffolds,
it was designed such that most users could successfully answer all items and complete
each scaffold within a 5- to 10-min interval.

2.3.4 Iterative refinement

The intervention was developed over multiple iterations where a version was inter-
nally assessed then tested with dyads who were observed and interviewed about their
experience. The intervention materials and assessments were then modified based on
their feedback. Piloting proceeded over 15 rounds with initial rounds focusing on sub-
components of the intervention and later rounds testing the entire system. Overall,
feedback from approximately 20 users was incorporated into the current version of
the intervention.

3 Method

The study was conducted in Spring 2021 in the midst of the pandemic. As a result, all
data collection occurred virtually from participants’ homes via video conferencing and
the experimenters also participated virtually from their homes. All study procedures
were approved by the Institutional Review Board at Anonymous University.

3.1 Participants

Participants were 42 individuals (21 dyads) recruited from a large public university
in the United States (via flyers, listservs, and online postings). Self-reported demo-
graphics were 55% female, 45% male, 0% non-binary, of which 52% were White,
33% Asian, 2% Black, 12% Hispanic, and 0% Native Hawaiian or Pacific Islander.
Participants average age was 22.4 years, and 83% self-reported English as their first
language.

The criteria for inclusion in the study was that participants must: (1) be an affiliate
of the university, (2) be at least 18 years old, (3) be fluent in English (materials
and instructions were in English); (4) not have significant and uncorrected vision
impairment; (5) have access to a computer with a webcam, microphone, and speakers
for video conferencing; and (6) had not previously played Physics Playground or a
similar game (e.g., Crayon Physics Deluxe,Magic Pen) for more than an hour. Further,
a stable internet connection was recommended but not required.

Participants were compensated with a $40 Amazon electronic gift card for their
participation.
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3.2 Procedure

Participantswere assigned to teams of two (i.e., dyads) based on their availability. They
were emailed the link to the Zoom video conference 24-h in advance of their study.
Teammates were introduced in a virtual room (via Zoom) upon the start of the study.
There were two experimenters who also joined via Zoom to facilitate data collection.
One experimenter facilitated the back-end tasks pertaining to running the models and
configuring the interventions, whereas the other facilitated interactions with the par-
ticipants. The experimenters communicated via chat and voice/video while interacting
with the participants but turned off their camera/microphones while participants were
working collaboratively in the main Zoom room. Participants were separated into two
breakout rooms to complete various individual tasks (e.g., engagement with the inter-
ventions, surveys), and the experimenters did not join these rooms except to deliver
instructions and provide help as needed. The study lasted for about 2.5 h (with breaks)
and was divided into three main phases, described in turn in the following sections.
Appendix A provides additional details on the study procedure.

3.2.1 Preliminary surveys and introductory materials

Participants were separated into breakout rooms to complete introductory study mate-
rials. These included a short survey, which gathered demographic and background
information reported above. We used the Physics Playground problem-solving envi-
ronment (Sect. 2.1) for the collaborative task. Game levels were organized into a
playground, and participants could freely explore and attempt any level within the
playground (though they usually explore them in linear fashion). Participants were
introduced to the game Physics Playground and completed a few tutorial levels with
the game. Participants then rejoined to themain room for themain portion of the study.

3.2.2 Collaborative gameplay, intervention, & surveys

Upon joining the main room, participants were verbally provided the following main
instructions for the study:

“Before we begin with the first round of play, I’m going to give you a quick
overview of the study so you know what to expect. [Experimenter shares screen
with an overview slide]. You’ve just completed the introductory survey and game
tutorial. Next, we will do five rounds of game play and feedback. During each
round of game play, you will collaborate to solve levels in Physics Playground
for 10 minutes. Only one of you can control the game at a time, so [Participant A]
will control for rounds 1, 2, and 3, then [Participant B] will control for rounds 4
and 5. After each round of game play, we will separate you into breakout rooms,
and you will receive feedback on your collaboration. Your goal is to use the
feedback you receive to improve your collaboration in the next round. After 5
rounds of play, we’ll have you complete another survey to conclude the study,
then we’ll let you go”
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Fig. 8 Overview of the study procedure

Participants then commenced the first of five 10-min rounds of collaborative game-
play (Fig. 8). Round 1 served as an initial baseline to assess each participant’s CPS
scores. Participants were first shown a brief four-minute introductory video that
explained the three facets and how their scores were generated prior to receiving
their initial feedback. The facet with the lowest performing round 1 score (Facet A)
was selected for intervention prior to rounds 2 and 3 (e.g., “Scaffold 1 [Facet A]” and
“Scaffold 2 [Facet A]” in Fig. 8). Then, after a 5-min break, round 3 served as the
second baseline, and interventions to improve the lowest performing facet from round
3 (i.e., Facet B where B �� A) were provided prior to rounds 4 and 5 (e.g., “Scaffold 2
[Facet B]” and “Scaffold 2 [Facet B] in Fig. 8). Participants also switched roles prior
to round 4.

Participants received the following reminder of their goals after engaging with the
intervention and before resuming gameplay (i.e., prior to rounds 2–5).

“Your goal is to work together as a team to solve as many levels as you can,
while using the feedback you received to improve your collaborative problem
solving.”

Feedback on all three facets were provided after round 1 so participants could
have a sense of their baseline performance. Feedback was only provided on the facets
selected for intervention (i.e., Facets A and B) immediately prior to receiving the
designated interventions (i.e., before rounds 2 and 3 for Facet A and before rounds
4 and 5 for Facet B). We collected participants’ perceptions of the accuracy of the
feedback immediately after it was provided using the following single-item measure:
“Your score for < facet name > was < X% > . How accurate was this score? They
responded using a five-point unipolar scale: 1 (not at all accurate), 2, 3, 4, and 5 (very
accurate).

We also collected participants’ perceptions of the intervention using the following
six-items from the intrinsic motivation inventory (Deci and Ryan 1982): (1) I enjoyed
doing this activity very much; (2) I am satisfied with my performance at this task;
(3) I didn’t try very hard to do well on this activity – reverse coded; (4) I did not
feel nervous at all while doing this; (5) I believe this activity could be of some value
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to me; and (6) I found my thoughts wandering spontaneously during this activity –
reverse coded. They were instructed to reflect on their “experience in the previous
round, including playing Physics Playground and viewing your scores and feedback.”
Participants responded using a five-point Likert scale (strongly disagree, somewhat
disagree, neutral, somewhat agree, strongly agree).

3.2.3 Post-intervention surveys & debriefing

After all five rounds of gameplay and intervention, participants individually completed
a final survey including five-items modified from the System Usability Scale (Lewis
2018) as a measure of general usability. The specific items were: (1) I thought the
feedback system was easy to use; (2) I imagine that most people would learn to use
the feedback system very quickly; (3) I found the feedback system very cumbersome
to use; (4) I thought there was too much inconsistency in the feedback system; and (5)
I found the feedback system unnecessarily complex. They were instructed to consider
all four rounds of interaction with the feedback system, which was defined as “The
feedback system refers to the Qualtrics surveys you viewed after each round of play,
and includes the scores you received, the tips for actions you can take, the video and
transcript examples from other teams, and the questions which tested your under-
standing.” Participants responded using the same five-point Likert-type scale used for
the intrinsic motivation inventory.

They completed a few additional items not relevant to the present study, uponwhich
they were debriefed.

3.3 Data treatment

3.3.1 Expert scoring of CPS facets and assessing model accuracy & generalizability

We recruited a trained human coder to manually score the automatically transcribed
utterances of the CPS interactions alongside Zoom video recordings to provide the
necessary context. This coder was one of the original coders of the reference dataset
used to train the computational models. This coder scored the first seven minutes
of each round of CPS interactions (i.e., the same data used to provide automated
feedback), resulting in 11,608 coded utterances across 105 transcripts (21 teams × 5
rounds per team).

Table 2 contrasts the proportional occurrence of human-coded CPS scores from the
training dataset alongside the current data. It also contrasts the mean model predicted
scores across data sets before norm-referencing. We note that ground-truth scores
for shared knowledge construction were highly similar across datasets, but there was
a 27% and 34% reduction in scores for negotiation/coordination and maintaining
team function, respectfully. This may be due to the current study which focused on
dyads, whereas the training data was on triads. Nevertheless, the model-predicted
probabilities were highly consistent across both datasets. Comparisons of model- vs.
human- scores for the current data indicated close alignment for shared knowledge
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Table 2 Proportional occurrence of facets across training and current datasets and for ground-truth human
coding vs. model predictions

Facet Ground truth (human-coded) Model predicted

Training Current Training Current

Construction of Shared Knowledge .261 .254 .257 .248

Negotiation/Coordination .181 .142 .163 .174

Maintaining Team Function .171 .102 .101 .107

construction and maintaining team function, but the model tended to underpredict and
overpredict negotiation and coordination by about 23% on the current data.

In terms ofAUROCs,model accuracies for the current datawere similar towhatwas
achieved on the training set, suggesting evidence for generalizability: shared knowl-
edge construction (AUROCs: 0.85 current vs. 0.88 training); negotiation coordination
(0.80 current; 0.83 training); and maintaining team function (0.79 current vs. 0.82
training). Overall, we considered the AUROC scores (0.79 to 0.85) on the current
data to be sufficiently accurate for automated feedback, especially since scores were
averaged from the utterance level to the round level, thereby increasing reliability due
to the principle of aggregation (Li et al. 1996).

To equate for baseline differences across facets and roles (not shown here), we
norm-referenced the facet scores for the current data using the same procedure as
in Sect. 2.2.4. The model training data were used for norming the automated scores
because this reflects the feedback presented to the participants. However, the distribu-
tions derived from the current data itself (rather than the training data) were used to
norm reference the human-coded CPS scores, which served as our dependent variable
for RQ1 (changes in CPS scores).

We also investigated the extent to which the facets selected for intervention, which
was based on the automated scores from the trained models, aligned with hypothetical
selections based on the ground-truth human-coded scores. Recall that interventions for
rounds 2 and 3 were selected based on the facet with the lowest computer-generated
round 1 score. This aligned with the lowest- and second-lowest human-coded score
55% and 29% of the time, respectively. Thus, only 17% of the time was the facet with
the highest human-coded score selected for intervention. Similarly, interventions for
rounds 4 and 5 were selected based on the lowest automated round 3 score with the
exception that it could not have been a facet selected for intervention during rounds
2 and 3. Here, 62% and 26% of the facets selected for intervention were also ranked
lowest or second-lowest, respectively, based on the human-coded scores. Again, only
12% of the selected facets had the highest human-coded ranking. Thus, the overall
conclusion is that facets selected for intervention based on the automatically computed
CPS scores were sufficiently, albeit not perfectly, aligned with what would have been
selected from the human-coded CPS scores.
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Table 3 Description of main dependent variables analyzed

Variable Description

RQ1: Ground Truth Score Human coded norm-referenced (on current data) CPS scores
(percentiles); higher scores indicate better performance

RQ2: Perceived Accuracy Participants self-reported perceptions of feedback accuracy

RQ2: Intrinsic Motivation Subjective perceptions of the interaction; higher scores are better

Automated Feedback Score Model-generated norm-referenced (on training data) CPS scores
(percentiles); higher scores indicate better performance

Automated Feedback Error Difference between model- and human- non-normed CPS scores;
positive error indicates models are providing higher scores compared
to humans

Intervention Duration Time (in minutes) spent engaging with the interventions

3.3.2 Other variables

The main variables are listed in Table 3, which were used to answer our main research
questions pertaining to improvements in CPS skills (RQ1—ground-truth score) and
users subjective perceptions ofCPSCoach 2.0 (RQ2—perceived accuracy and intrinsic
motivation). The other measures (automated score, feedback error, and intervention
duration) were used to further explore the data.

The intervention durations were examined for outliers. We corrected time spent
engaging with the interventions by recoding values greater than 10 min (ostensibly
due to the experimenter failing to end the intervention after the time limit) to 10
min. For the intrinsic motivation inventory (IMI), we first reverse-scored items 3
and 6 (Sect. 3.2.2). A reliability analysis (Cronbach’s alphas) indicated that dropping
item 3 increased the reliability from 0.53 to 0.58, thereby bringing it closer to the
recommended minimum threshold of 0.6 (Rosenthal and Rosnow 1984). Accordingly,
we averaged the remaining five items.

The total dataset was comprised of 630 cases (42 participants × 3 facets × 5
rounds), although the number of cases per variable is lower due to varyingmeasurement
schedules. Appendix B provides histograms of the variables analyzed after averaging
them to the participant level (i.e., across facets and rounds).

3.3.3 Statistical modeling approach

The data included repeated measures (multiple facets and rounds per participant),
so we used mixed-effects regression models using the lme4 package in R for model
estimation. We used type 3 ANOVAs from the car package to test for significant
main effects in the presence of interactions; we reverted to type 2 ANOVAs when
the interaction terms were non-significant. We started with maximal random effects
structures with random intercepts and slopes by participant and reduced complexity
until there were no convergence issues. In cases where the random effect variances
were 0, we reverted to basic (i.e., non-multilevel) models. All numeric variables were
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z-score-standardized so coefficients could be interpreted as standardized effects (i.e.,
β coefficients). Post hoc analyses of significant interactions were conducted using the
emmeans and emtrends functions from the emmeans package.We used two-tailed tests
with ap<0.05 cutoff for significance and applied a false discovery rate (fdr) adjustment
(Benjamini andHochberg 1995) formultiple comparisons; these are designated as pfdr .

4 Results

4.1 Descriptives and correlations

Table 4 lists descriptives and correlations among the variables analyzed here. Overall,
ground-truth human-coded scores were moderately to strongly correlated (r � 0.64)
with automated feedback scores. Perceptions of feedback accuracy (M � 3.3) were
above the middle of the 1–5 scale and correlated with both types of feedback scores,
more so for the automated scores that were displayed to participants. Importantly,
feedback error did not correlate with participants’ perceptions of accuracy of the
feedback, but did correlate with both ground-truth and automated feedback scores.
Participant spent an average of 5 min (out of a maximum of 10-min or about half the
available time) engaging with the intervention, which decreased from a mean of 6.5
min after round 1 to 5 min after rounds 2 and 3 and then 4 min after round 4. Time
spent engaging with the intervention was related to perceptions of feedback accuracy
(r � 0.25). Lastly, intrinsic motivation did not correlate with any of the other variables.

Table 4 Descriptive statistics and correlations among key variables

Variable M (SD) Ground
truth
score

Feedback
score

Feedback
error

Perceived
accuracy

Intervention
duration

Ground
Truth Score

.49 (.10)

Automated
Feedback
Score

.58 (.15) .64**

Automated
Feedback
Error

− .03 (.02) − .44** .29**

Perceived
Accuracy

3.3 (1.1) .24* .34** .12

Intervention
Duration

5.0 (1.9) − .03 − .01 .06 .25*

Intrinsic
Motivation

3.9 (.56) .19 .03 − . 16 .18 .18
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4.2 RQ1: changes in CPS scores across rounds

Participants received the intervention for their lowest scoring facet from round 1 prior
to rounds 2 and 3 and again on a different facet with lowest round 3 scores prior to
rounds 4 and 5 (with the constraint that the same facetwas never repeated, if this second
facet was the same as the first, the next lowest facet was selected). Thus, round 1 scores
serve as a baseline for the subsequent round 2 and 3 interventions, and round 3 scores
serve as a baseline for the subsequent round 4 and 5 interventions. The intervention
would be successful to the extent that scores for the facet selected for intervention
(called the treated facet) increased after receiving the intervention. However, any
change in scores for the treated facet might not be solely attributed to the intervention
itself. Indeed, scores could change if the initial values were outliers and subsequent
scores would revert back to the true value (i.e., regression to the mean), they could
improve simply due to practice effects, they could decrease due to fatigue effects, or
they could remain flat due to ceiling effects. To account for these possibilities, we
utilized a matched-control quasi-experimental design (Stuart and Rubin 2008) where
intervention cases were paired with matched control cases equated on baseline scores.

4.2.1 Creating treatment &matched controls

The matching procedure proceeded as follows. Consider round 1, where each partic-
ipant has three facet scores, of which the lowest score was selected for intervention.
Thus, of the 126 cases (42 participants × 3 facets), a third (n � 42) were considered
treated cases. Of the remaining 84 cases that did not receive an intervention, thematch-
ing procedure aims to identify a subset of 42 matched-control cases such that the mean
difference in their scores prior to the intervention (i.e., baseline scores) is statistically
equivalent to that of the treated cases while also equating for pertinent covariates such
as facet and role. Once matching is done, the key comparison pertains to changes in
scores for the treated compared to the matched control cases after receiving the inter-
vention. Because baseline scores are equivalent for these two groups and other aspects
of the design such as role and facet are balanced, we have more confidence that any
observed differences are attributable to the intervention itself rather than incidental
factors.

We performed bipartite cardinality matching using the bmatch function from the
designmatch package to identify the matched control cases with the constraint that
the mean difference in baseline scores for treated vs. matched control cases was less
than 0.05 standard deviations and that distributions of roles and facets were close
to equivalent (called fine balance). Matching was done twice, first for the first set
of interventions (i.e., rounds 1–3 with round 1 as the baseline) and then again for
the second set of interventions (i.e., rounds 3–5 with round 3 as the baseline). When
matching for the second round of interventions (i.e., rounds 3–5), we removed cases
corresponding to facets selected for the first set of interventions (i.e., rounds 1–3).
Even though round 3 scores were included twice, the analyzed data pertains to two
different facets (one for each set of interventions).

Table 5 provides descriptives on the covariates for the treated (T) and matched-
control (C) groups before and after the matching procedure. Prior to matching, the
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control group consisted of the baseline scores for the two non-treated facets. By design,
it had significantly higher baseline scores than the treated group for both round 1 (p <
0.01) and round 3 (p < 0.001). However, the two groups were equivalent on baseline
scores (ps > 0.73) after matching. Whereas all 42 treatment cases were matched to
a control in round 1, only 25 were successfully matched in round 3. Lastly, there
were no significant differences across treatment and control groups across roles and
facets before matching for round 1. However, for round 3, there was considerable
imbalance in facets in the two groups prior to matching; they are perfectly balanced
after matching.

4.2.2 Changes in scores across rounds for treatment andmatched controls

We investigated changes in ground-truth scores via Model 1 below. Here, round was
a numeric independent variable, and condition (treatment, matched control [refer-
ence group], unmatched) and role (controller [reference group] vs. observer) were
moderators. We included facet (shared knowledge construction [reference group],
negotiation/coordination, & maintaining team function) and the number of utterances
as covariates to account for facet differences and verbosity effects (i.e., higher scores
for those who speak more).

Model1 : C P SGroundT ruthScore

∼ Round × Condition × Role + Facet + V erbosi ty + Random E f f ects

This model specification was designed to examine the slope or rate of change in
CPS scores across rounds and critically to investigate whether the slopes varied by
condition. Even though we were primarily interested in slope differences for the treat-
ment vs. matched control, we included the unmatched cases for unbiased estimation
of parameters. The inclusion of role as moderator allowed us to investigate whether
changes in slopes by condition (i.e., the round × condition interaction) further varied
by role (i.e., separate slopes for each condition for controllers and observers—six
total). This model specification also includes all main effects and two- and three-way
interactions, though we are mainly interested in effects involving condition. We esti-
mated separate models for the first (i.e., rounds 1–3 with round 1 as the baseline [i.e.,
pre-intervention score], n � 378) and second (i.e., rounds 3–5 with round 3 as the
baseline, n � 201) set of interventions. Note that assignment of role switched before
round 4.

Changes in scores for rounds 1–3. The model that converged included random
intercepts and slopes for condition (i.e., condition | participant). There was a signif-
icant main effect of condition, X2(2) � 12, p � 0.002, but this was subsumed by
the significant round × condition interaction, X2(2) � 15, p < 0.001, suggesting that
the rate of change of CPS scores across rounds varied by condition. As shown in
Figure 9A, both the treatment and matched controls showed improvements in slopes.
However, the slope for the treatment (β � 0.27 [0.13, 0.42]) was 80% steeper than the
matched control (β � 0.15 [0.01, 0.30]). There were no other significant interactions
with condition.
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Fig. 9 CPS scores across rounds A 1–3 and B 3–5 for treatment and matched control. Note that the values
for round 3 are different for A and B because they pertain to different treatment and matched controls

Changes in scores for rounds 3–5. The model that converged only included a
random intercept (i.e., 1 | participant). There was a significant condition × round
interaction, X2(2) � 14, p � 0.001. However, as indicated in Fig. 9B, scores were
largely flat for both treatment (β � -0.03 [-0.23, 0.17]) and for matched control (β �
0.04 [-0.16, 0.24]). There was also a significant condition × role interaction, X2(2) �
14, p � 0.001, but the significant differences only pertained to the unmatched group,
which is not of interest here.

4.3 RQ2: subjective perceptions of the system

4.3.1 Perceptions of feedback accuracy

Participants generally thought the feedback was moderately accurate (mean of 3.3 on
a 1–5 scale). We investigated the factors that predicted it starting with Round 1 where
participants viewed feedback and self-reported their perceptions of its accuracy for
all three facets prior to any intervention (n � 126 cases; 42 participants × 1 round
× 3 facets). We included role, facet, feedback score, feedback error, and number of
utterances as predictors in Model 2. Next, we re-ran the model for rounds 2–4, where
participants received feedback on and rated the accuracy of the facet selected for
intervention (n � 126 cases; 42 participants× 3 rounds× 1 facet). This second model
included round as a predictor in addition to the above predictors (Model 3).

Model2 : Perceptionsof Accuracy(Round1) ∼ Role + Facet + FeedbackScore

+ Feedback Error + V erbosi ty + Random E f f ects

Model3 : Perceptionsof Accuracy (Rounds2 − 4)

∼ Role + Facet + FeedbackScore + Feedback Error

+ V erbosi ty + Round + Random E f f ects
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Models with intercept only random effects converged (i.e., 1 | participant). In both
cases, the only significant effect was for the feedback score, X2(1) > 53, ps < 0.001,
indicating that participants tended to be more confident in the feedback when they
received higher scores (β � 0.55 [0.40, 0.70] for round 1 and β � 0.59 [0.45, 0.74] for
rounds 2–4). Importantly, their perceptions of feedback remained stable across rounds
(β � -0.09, p � 0.11).

4.3.2 Perceptions of the interventions

Overall participants’ perceptions of the intervention were positive with a mean of
3.9 (SD � 0.56) on the intrinsic motivation inventory (1–5 scale). We investigated
factors associated with these scores by regressing them on role, facet, feedback score,
feedback error, round, and number of utterances (n � 163 due to occasional missing
data; Model 3 but with a different dependent variable). Only an intercept-only random
effect model converged (i.e., 1 | participant). Results indicated significant main effects
for feedback score, X2(1) > 6.6, p � 0.01, and number of utterances (verbosity), X2(1)
> 3.9, p < 0.05. Those who received higher scores had more positive perceptions of
the intervention (β � 0.15 [0.03, 0.26]) as did those who were more verbose (β �
0.15 [0, 0.30]).

Participants also completed a modified version of the system usability scale as a
measure of general usability at the end of the study using a 1–5 scale. Participants
were neutral with respect to the ease of use of the system, M � 2.9 (SD � 1.2), and its
complexity, M � 3.1 (SD � 1.1), but they found it to be somewhat cumbersome, M
� 3.3 (SD � 1.0) and inconsistent, M � 3.6 (1.2). They were modestly positive about
its learnability, M � 3.49 (SD � 1.1).

5 Discussion

We developed and tested CPSCoach 2.0, an intelligent system that provides automated
feedback and personalized instructional scaffolds to improve peoples’ collaborative
problem-solving (CPS) skills.We integrated our intervention in the context of a virtual
game-based collaborative learning environment with naturalistic open-ended interac-
tion. We conducted a pre-post, matched-control quasi-experimental study to examine
whether engaging with CPSCoach 2.0 was associated with improvements in targeted
CPS skills (RQ1). We also investigated users’ subjective perceptions of the system
and the factors related to their perceptions (RQ2). We discuss the main findings along
with design implications, generalizability, limitations, and future work.

5.1 Main findings and implications

Our main finding (RQ1) was that CPSCoach 2.0 had some success in improving
CPS skills after the first set of interventions. Specifically, facets that were selected
for intervention improved at a higher (80%) rate than matched controls that did not
receive the intervention despite having equivalent baseline scores. To our knowledge,
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this is the first demonstration of improvement of CPS skills via automated feedback
and personalized instructional scaffolds. Whereas previous work (Sect. 1.1.3) has
targeted improvement on related lower-level behaviors (e.g., turn taking, improving
communicative tone) and intermediate-level socio-cognitive constructs (e.g., shared
attention, rapport), CPS is more than the sum of these behaviors because it involves
both problem-solving and collaboration. For example, equitable verbal participation
among teammates is likely related to maintaining a positive team environment as
everyone should have the opportunity to voice their ideas. However, this is insufficient
as the team could be engaging in hostile conversations, or be off-topic, neither of which
might contribute to positive CPS outcomes. Similarly, high verbosity itself might not
be indicative of effective CPS if the team does not engage in productive metacognitive
reflection when their solutions fail. Accordingly, we moved from the more general
collaborative behaviors to higher-level CPS skills and found that principles from the
science of learning embedded in intelligent technologies can be leveraged at promoting
these skills.

We also had a null finding in that therewere no changes in scores for the second set of
interventions after roles were reversed and a second facet was selected for feedback.
We chose to switch roles in order to give both users an opportunity to control the
gameplay. However, it is likely that adjusting to a new role while also focusing on a
different facet for feedback resulted in too high of a cognitive load for users, which
might explain the lack of any further improvement. Another possibility is that because
the intervention materials were role-agnostic (i.e., they were the same for both roles),
users had difficulty applying the principles from one role to another. Fatigue effects
after three rounds of gameplay and two phases of the first intervention might also have
contributed to the lack of effects for the second intervention. These findings suggest
that it may be prudent to keep collaboration roles consistent for a given session; role
switching might occur for subsequent sessions or when users have demonstrated a
sufficient level of mastery of CPS skills in a given role. Second, there may be benefits
to customizing the intervention materials for each role, especially given the additional
cognitive load on the Controller who has to also manipulate the game environment in
addition to problem solving and interacting with the two Collaborators.

Turning to users’ perceptions of the feedback and interventions (RQ2), we found
that those who received higher scores as feedback, found it to be more accurate and
had more positive impressions of the intervention. Interestingly, the model errors
did not predict participants’ perceptions of the feedback and intervention, suggesting
that they might not have been sensitive to these errors. This finding is consistent
with prior research on speech-based learning systems, which has found that perfect
speech recognition and natural language processing are not necessary for beneficial
interactions (D’Mello et al. 2010; Forbes-Riley and Litman 2011). In the present
case, we ameliorated some of the errors by using deep learning models that focus on
semantics and by increasing reliability by aggregating noisy predictions frommultiple
utterances across a seven-minute window. Overall, users’ perceived CPSCoach 2.0 as
being moderately accurate and generally had positive impressions of it.

123



1116 S. K. D’Mello et al.

5.2 Scalability and generalizability

Our approach to CPS feedback is highly scalable and has potential to generalize
beyond the current context. Regarding scalability, users only need access to a com-
puter with standard webcam, microphone, and Internet connection; no specialized
sensors are needed. With respect to generalizability, we expect that this work can be
applied to similar contexts because this research was predominantly conducted in-the-
wild where participants engaged from their homes. For example, in our user studies
we encountered interrupting housemates and distracting notifications from other com-
puter applications. This is part and parcel of remote work in the post-pandemic era
(Erik et al. 2020; Breideband et al. 2022), which makes the study highly relevant. One
additional way our work supports generalizability is through the use of a CPS frame-
work, which was selected for its ability to generalize across domains (Sun et al. 2020).
Although the examples used in the interventionwere derived in the context of a specific
collaborative task, all other content and activities were domain-independent. We also
demonstrate generalizability in our CPS models, which transferred from training to
deployment contexts despite key differences. In particular, the models were trained on
pre-pandemic data consisting of triads collaborating in a laboratory environment and
applied to dyads collaborating from their chosen, remote location post-pandemic with
only a slight reduction in accuracy. Taken together, the models and instructional scaf-
folds can be ported to newdomainswith some additional data collection for fine-tuning
and iterative refinement. Future studies will be needed to examine generalizability to
additional contexts.

5.3 Limitations and future work

Like all studies, ours has limitations. First, our sample size was small (n � 42) and
might not have had sufficient power to detect some of the effects. The reliability on
the intrinsic motivation inventory was also low, suggesting that additional items or a
different instrument should be used for future work. Second, we elected to use a quasi-
experimental, pre-post, matched-control design in this initial user study of CPSCoach
2.0. Our goal was to simply demonstrate whether engaging with CPSCoach 2.0 could
be associated with improvements in CPS scores and to examine user perceptions of the
system. Even though such designs are valid methods for generalized causal inference
(Cook et al. 2002) and have been used to evaluate educational applications (Koedinger
et al. 2010), the design did not afford assessing improvements in CPS outcomes (i.e.,
gameplay success) because there was no non-intervention control group. Because
findings from this study indicated areas of improvement forCPSCoach 2.0, it is prudent
to make these changes before conducting a well-powered randomized controlled trial.

Along those lines, another limitation pertained to some users finding the system
to be cumbersome and inconsistent, suggesting some redesign is needed. Additional
improvements would include tailoring intervention content to different roles. We also
only focused on a single CPS task in one domain, and the collaboration and inter-
vention times were quite short. It is possible that more time and extended periods
of targeted feedback are needed to further improve CPS. Relatedly, it is likely that a
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single session might not provide sufficient practice and opportunities to fully develop
CPS skills. Other limitations pertain to the use of college students as study partici-
pants and fixed assignment of roles. Generalizability across multiple CPS activities,
different populations, and spontaneous emergence of roles should be warranted. We
also did not analyze measures of Physics learning due to the relatively short duration
of interactions with the game and lack of learning supports; previous studies indicate
the need for longer, and multiple gameplay sessions to obtain reliable learning gains
(e.g., 4 h over 1.5 weeks (Shute et al. 2013)) and the provision of explicit supports
pertaining to the underlying physics concepts (Rahimi et al. 2022).

Taken together, an important item for future work is to extend the intervention into
a multi-session use of CPSCoach 2.0, where users receive feedback and scaffolds on
all three facets, in multiple roles, different domains and activities, and collaborate with
multiple teammates. Such a longitudinal study will also afford collection of additional
measures, including learning outcomes.

5.4 Concluding remarks

Researchers, practitioners, and policy makers have lamented the dearth of collabora-
tive problem-solving (CPS) skills among people and have advocated for educational
interventions that intentionally target the development of these skills (Griffin et al.
2012b; Fiore et al. 2018). Accordingly, we developed CPSCoach 2.0, as a proof-of-
concept system for the development of CPS skills where users collaborate to solve
complex problems, receive automated feedback on that collaboration, engage in per-
sonalized instructional scaffolds, andhaveopportunities to apply the gainedknowledge
in subsequent collaboration cycles. A quasi-experimental, pre-post, matched-control,
design indicated positive benefits of CPSCoach 2.0, but also areas of improvement
to inform the design and testing of the next version of the system. Additionally, the
overall approach could be applied to other twenty-first-century skills, where there are
also widespread calls for intentional approaches to help people develop these valu-
able skills (Dede 2010; Griffin et al. 2012b). Thus, the present work demonstrates a
proof-of-concept design of the use of automated feedback and instructional scaffolds
to support building critical twenty-first-century skills.
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Appendix A: Details on Study Procedure

We provide the following additional details to complement the overview provided in
Sect. 3.2.

Round 1–3 gameplay. A randomly selected participant was chosen as the Con-
troller (i.e., who interacts with the game mechanics) and the other as the Contributor
(i.e., who provides suggestions) prior to the start of the first round. After completing
10 min of gameplay (Round 1), participants were separated into breakout rooms again
and informed that they would receive feedback on their collaboration.

Rounds 2 & 3 gameplay & intervention on Facet A. Upon entering the breakout
room, participants were shown a brief four-minute video that explained the three
facets of the CPS framework and how their scores were generated. Participants then
received feedback on all three facets and self-reported their perceived accuracy of
the feedback for each facet. The facet with the lowest Round 1 score (Facet A) was
selected for improvement, and this was communicated to the participants along with
the Scaffold 1 Intervention. Participants had a maximum of 10 min to engage with the
intervention, uponwhich the experimenter intervened. Participants who completed the
intervention before the 10-min interval had elapsed simply informed the experimenter
who instructed them to wait for their partner.

When both partners were back in the main room, a second 10-min round of game-
play (Round 2) commenced with the same participants assigned to the Controller
vs. Contributor roles. When 10-min had elapsed, they were sent to separate breakout
rooms where they received feedback on the same facet selected for improvement in
the previous round (i.e., Facet A). They once again self-reported their perceptions of
feedback accuracy for this facet only, upon which they received the Scaffold 2 Inter-
vention to further improve on the same facet (i.e., Facet A). When both participants
were done with the intervention or 10 min had elapsed, participants re-entered the
main room and completed a third 10-min round of collaborative gameplay (Round 3).

Rounds 4 & 5 gameplay & intervention on Facet B. After Round 3, participants
once again were moved to separate breakout rooms. They were then given a five-
minute break. When they returned, they were informed that they would now focus on
improving performance on a different facet (i.e., Facet B – the one with the second
lowest score during Round 3) using the following instructions.

“In the following round you will change roles with your teammate. If you were
controlling the game, you will now be observing your teammate and offering
suggestions. If you were previously observing, you will now have control of
gameplay. We’d like you to now focus on a different aspect of collaboration:
<Facet Name>”

They received the Scaffold 1 Intervention, but this time for Facet B, and engaged
with it as before. Once they were done or time had elapsed, they returned to the
main room. They were informed that they would now switch roles with the previous
Controller now becoming the Contributor and vice versa. They completed another
10-min of gameplay (Round 4) in their new roles. Next, they again moved to separate
breakout rooms where they received feedback for Facet B, self-reported its perceived
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accuracy, and engagedwith the Scaffold 2 Intervention for Facet B. Then, they returned
to the main room and completed one last round (Round 5) with their new roles.

Appendix B: Histogram of Variables Analyzed

References

Alterman, R., Harsch, K.: A more reflective form of joint problem solving. Int. J. Comput. Support Collab.
Learn 12, 9–33 (2017). https://doi.org/10.1007/s11412-017-9250-1

Amon,M.J., Vrzakova, H., D’Mello, S.K.: BeyondDyadic coordination:multimodal behavioral irregularity
in triads predicts facets of collaborative problem solving. Cogn. Sci.. Sci. (2019). https://doi.org/10.
1111/cogs.12787

Andrews-Todd, J., Forsyth, C.M.: Exploring social and cognitive dimensions of collaborative problem
solving in an open online simulation-based task. Comput. Human Behav. 104, 105759 (2020)

Aran, O., Gatica-Perez. D (2010) FusingAudio-Visual Nonverbal Cues toDetect Dominant People inGroup
Conversations. In: 2010 20th International Conference on Pattern Recognition. pp 3687–3690

Azevedo, R., Bernard, R.M.: A meta-analysis of the effects of feedback in computer-based instruction. J.
Educ. Comput. Res. 13, 111–127 (1995)

Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to
multiple testing. J. Royal Stat. Soc. Series B-Methodol. 57, 289–300 (1995)

Beyan, C., Carissimi, N., Capozzi, F., et al (2016) Detecting Emergent Leader in a Meeting Environment
Using Nonverbal Visual Features Only. In: Proceedings of the 18th ACM International Conference on
Multimodal Interaction. ACM, New York, NY, USA, pp 317–324

Bosch, N., D’Mello, S., Baker, R., et al (2015) Automatic detection of learning-centered affective states
in the wild. In: Proceedings of the 20th international conference on intelligent user interfaces. pp
379–388

123

https://doi.org/10.1007/s11412-017-9250-1
https://doi.org/10.1111/cogs.12787


1120 S. K. D’Mello et al.

Bransford, JD., Brown, AL., Cocking RR (2000) How people learn
Breideband, T., Martinez, G., Sukumar, PT., et al (2022) Collaborating from Home during COVID-19:

Examining Individual Sleep Patterns and Sleep Alignment
Brynjolfsson, E., Horton, JJ., Ozimek, A., et al (2020) COVID-19 and remote work: An early look at US

data
Calacci, D., Lederman, O., Shrier, D., Pentland, A., “Sandy” (2016) Breakout: An Open Measurement and

Intervention Tool for Distributed Peer Learning Groups. CoRR abs/1607.0:
Chi, M., Wylie, R.: The ICAP framework: linking cognitive engagement to active learning outcomes. Educ.

Psychol. 49, 219–243 (2014)
Chi, M., Siler, S., Jeong, H., et al.: Learning from human tutoring. Cogn. Sci.. Sci. 25, 471–533 (2001)
Chopade, P., Edwards, D., Khan, SM., et al (2019) CPSX: Using AI-machine learning for mapping human-

human interaction and measurement of cps teamwork skills. In: 2019 IEEE International Symposium
on Technologies for Homeland Security (HST). pp 1–6

Cook, T.D., Campbell, D.T., Shadish, W.: Experimental and quasi-experimental designs for generalized
causal inference. Houghton Mifflin, Boston, MA (2002)

Cukurova,M., Luckin,R.,Millán, E.,Mavrikis,M.: TheNISPI framework: analysing collaborative problem-
solving from students’ physical interactions. Comput. Educ.. Educ. 116, 93–109 (2018). https://doi.
org/10.1016/j.compedu.2017.08.007

Cukurova, M., Zhou, Q., Spikol, D., Landolfi, L, (2020) Modelling collaborative problem-solving com-
petence with transparent learning analytics: is video data enough? In: Proceedings of the tenth
international conference on learning analytics &amp; knowledge. association for computing machin-
ery, New York, NY, USA, pp 270–275

D’Mello, S.K., King, B., Graesser, A.: Towards spoken human-computer tutorial dialogues. Hum. Comput.
Interact.comput. Interact 25, 289–323 (2010)
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