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ABSTRACT 
Collaborative problem solving (CPS) in virtual environments is an 
increasingly important context of 21st century learning. However, 
our understanding of this complex and dynamic phenomenon is 
still limited. Here, we examine unimodal primitives (activity on the 
screen, speech, and body movements), and their multimodal 
combinations during remote CPS. We analyze two datasets where 
116 triads collaboratively engaged in a challenging visual 
programming task using video conferencing software. We 
investigate how UI-interactions, behavioral primitives, and 
multimodal patterns were associated with teams’ subjective and 
objective performance outcomes. We found that idling with 
limited speech (i.e., silence or backchannel feedback only) and 
without movement was negatively correlated with task 
performance and with participants’ subjective perceptions of the 
collaboration. However, being silent and focused during solution 
execution was positively correlated with task performance. 
Results illustrate that in some cases, multimodal patterns 
improved the predictions and improved explanatory power over 
the unimodal primitives. We discuss how the findings can inform 
the design of real-time interventions for remote CPS.   
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1   Introduction 
“What shall we do about it?” The question was followed by 
uncomfortable silence. Nobody moved. Clearly the team was 
stuck on the problem and nobody had a clue how to move 
forward. “How about if you run the simulation again and check the 
code step-by-step? You will easily spot your mistake” is what a 
teacher might suggest. However,, no teacher was there. The team 
was alone and the clock was ticking.  
Although remote collaborative problem solving (CPS) is less 
dramatic than described above, it shares many aspects of this 
situation. First, a teacher or facilitator is rarely present and, when 
they are present, they cannot attend to all students. Consequently, 
students working in remote teams on a given task cannot raise 
questions as in a traditional classroom and, thus, have to rely on 
available materials and other teammates. In addition, this already 
challenging situation is accentuated by the affordances of virtual 
environment, which are subpar compared to collocated 
interaction. Therefore, the team’s success strongly depends not 
only on students’ problem-solving skills but also on students’ 
ability to collaborate with (often) strangers. 
In addition, large-scale remote CPS sessions are challenging to 
assess from the perspective of learning analytics. Although it 
might be simple to characterize students’ performance by concise 
measures such as time-to-task-completion and task score, these 
measures cannot describe the rich multimodal dynamic processes 
and interactions between teammates [6]. Therefore, it remains 
challenging to automatically pinpoint which team’s actions and 
behaviors underline good performance and which reveal their  
shortcomings.  
Prior research on understanding collaborative learning have 
relied on expert coding of video data [18,28]. However, expert 
coding is time-consuming, especially with large sample sizes. 
Consequently, current research has explored the potential of 
bottom-up data-driven approaches to complement expert coding 
and has expanded to the field of multimodal learning analytics [2]. 
Data-driven understanding of collaborative learning has advanced 
from the analyses of unimodal primitives, such as keystrokes and 
clickstreams, to the analyses of data streams obtained from the 
multiple sensors [39]. The main motivation has been that the use 
of multiple sensors and resources allows for holistic 
understanding of collaborative processes [29,41,53].  
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However, multimodal modeling often suffers from the lack of 
model interpretability [19,32,55]. That is, it is challenging to 
identify which behaviors, signals, patterns, or model parameters 
contribute to model predictions since model predictions are a 
result of all factors. To address this, we aim to identify 
interpretable patterns in teams’ verbal and nonverbal behaviors 
that correlate with meaningful outcomes during remote CPS. 

1.1 Contribution and research questions 
We study students’ performance in remote CPS through the lens 
of teams’ interaction in a virtual environment and their verbal and 
non-verbal behaviors. Concretely, we investigate how unimodal 
primitives (i.e. interaction in the virtual environment, students’ 
speech, and the team’s body movement) and multimodal 
combinations of these primitives are associated with both the 
team’s objective task score and the self-assessed subjective 
perceptions of the collaboration. In addition, we answer the 
theoretical question of whether “more is better” and compare 
whether the multimodal patterns are more predictive of these 
outcomes compared to the unimodal primitives. We address the 
following specific research questions (RQs):  
• RQ1: What behavioral patterns (in terms of the team’s 

interaction, speech, and body movement) emerge during 
remote collaborative problem solving? 

• RQ2: How do these patterns predict subjective and objective 
outcomes? 

• RQ3: What is the advantage of multimodal patterns over 
unimodal primitives? 

We address these questions in a novel research context. Whereas 
prior research has largely investigated dyads [36,42] or teams 
working in collocated settings [38,54], we use two large-scale 
datasets (348 students in total) [8,43] of triads who collaborated 
remotely over a shared virtual environment.  

2 Background & Related Work 

2.1 Process Gain and Loss during CPS 
CPS occurs when two or more people engage in a coordinated 
attempt to solve a problem [37,59]. Intuitively, we may expect that 
multiple people working together on a task might achieve better 
outcomes, compared to an individual (this is called process gain 
[25]). However, that is often not the case. Groups often perform 
worse than they should because they engage in faulty CPS 
processes, a phenomenon known as process loss [16,25]. Process 
loss has been attributed to multiple factors, the most common 
being coordination losses, such as production blocking during 
collective ideation [31], the common-knowledge effect where 
there is an overemphasis on shared versus individual knowledge 
[13], and group-think where individual members converge to the 
dominant view [21]. Further, motivation losses, such as social-
loafing [23], evaluation apprehension [5] and free-rider effect 
[24], further contribute to groups’ underperformance. 
Process loss gets amplified in remote collaborations, where 
collaborators do not have the rich of social signals available in 
face-to-face interactions [40]. Lagged, low quality, or non-existent 

audio and video channels dampen basic social signals [40]. Thus, 
process loss might be more severe in remote CPS.  

2.2 Modeling Behavioral Patterns during 
Collaborations 
Considerable work has been dedicated to data-driven modeling of 
collaboration. Data-driven approaches have mainly aimed to 
model low-level behaviors, such as turn-taking [3], joint attention 
[14,33], or synchrony and coordination [4,44]. Such behaviors 
have been modeled from speech [3,44], interaction patterns [3], 
eye gaze [33], physiology [34], and face or head pose [14,33].  
Recent efforts have extended beyond low-level signals to model 
high-level collaborative behavioral patterns. For example, team 
management dialog has been modeled from eye gaze [22], social 
regulation from features of computer interaction [9], gender 
dynamics from language features [27], and collaboration quality 
from discourse features [17]. Specific to CPS, language-based 
features have been used to model facets of CPS (e.g. negotiating 
ideas) [15,45] and their corresponding behavioral indicators  (e.g. 
asking for clarification) [10]. 
Unimodal features presumably cannot richly capture complex 
social interactions. Thus, multimodal signals have been 
increasingly used in modeling high-level collaborative patterns 
[1,44] as well as on students’ states and traits, such as empathy 
[20], engagement [52], workload [26], and learning gains [35].  For 
example, Yoo and Kim [56] modeled project grades of long-term, 
online discussion groups using multimodal behavioral and 
linguistic patterns [56]. Follow-up analyses provided added 
interpretability to their results, providing the insight that acting 
as an information giver, using positive emotion words, and 
collaborating further in advance of the deadline (i.e. not 
procrastinating) positively related to project grades.  
For CPS specifically, Murray and Oertel [30] modeled expert-rated 
task performance on a discussion-based CPS task. They trained a 
Random Forest classifier to predict task performance  from 
acoustic-prosodic and linguistic features with a mean-squared 
error of 64.4 (baseline = 79.3).  While a multimodal feature set did 
yield the best performance, it remained unclear which features 
precisely were the predictive. Other data-driven approaches, such 
as recurrence quantification analysis, have investigated 
collaborative learning from multiple modalities [1,7,8]. Despite 
these analyses work with complex systems of signals, the 
contribution of individual signals and modalities cannot be 
isolated from the results.         
In summary, preliminary work has demonstrated the feasibility 
and utility of leveraging multimodal signals to predict team 
performance, more research is needed to understand the 
contribution of each modality to team processes and outcomes.  

3 Data Collection 
We used data from sources that were  previously published 
elsewhere (dataset I [46]; dataset II [8]). The task in both datasets 
was similar with several nuances which we summarize below.  
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3.1 Participants 
In dataset I, participants were 111 undergraduate students from a 
medium-sized private Midwestern university (63.1% female, 
average age = 19.4). Students were 74.8% Caucasian, 9.9% 
Hispanic/Latino, 8.1% Asian, 0.9% Black, 0.9% American 
Indian/Native Alaskan, 2.7% other, and 2.7% did not report 
ethnicity. Students were compensated with two hours of course 
credit. Prior to participation, students were asked to confirm that 
they had no previous experience with computer programming, 
which was the only inclusion criteria for this study. Students were 
assigned to 37 teams of three based on scheduling constraints. 
Thirty students from 10 teams indicated they knew at least one 
person in their team prior to participation. 
In dataset II, participants consisted of 303 students from two large 
public universities (56% female, average age = 22 years). Students 
were 47% Caucasian, 28% Hispanic/Latino, 18% Asian, 2% Black or 
African American, 1% American Indian or Alaska Native, and 4% 
other. Students were compensated either with a $50 gift card or 
with 3.5 hours of course credit. Prior to participation, students 
were asked to confirm that they met three inclusion criteria: 1) 
they spoke English, 2) they had no significant vision impairments, 
and 3) they had no prior experience with a physics game 
(unrelated to this study). Students were assigned to 101 teams of 
three based on scheduling constraints. Thirty students from 18 
teams (26%) indicated they knew at least one person from their 

team prior to participation. Here, we use data from 116 teams – 32 
teams from dataset I and 84 teams from dataset II. 

3.2 Task Environment and CPS Task 
We employed code.orgs’s Minecraft-themed Hour of Code 
(Studio, 2014) as our CPS environment. Hour of Code is an online 
resource for students of all ages to learn basic computer 
programming principles in an hour. It employs a visual 
programming language, called Blockly [11], that represents lines 
of code (e.g. loops) as blocks that only interlock with other blocks 
in a syntactically correct manner. In Hour of Code, students use 
code to build structures and navigate around obstacles. At any 
point during code construction, students can run their solution 
and visualize the results in a preview window (see Figure 1). 

3.3 Procedure 
Students were randomly assigned to one of three separate, 
computer-enabled workstations in a lab. The workstations were 
either in separate rooms or partitioned in the same room with 
dividers. Each computer was equipped with a webcam and headset 
microphone for video conferencing with screen-sharing through 
Zoom (https://zoom.us). The headset microphone recorded 
student speech at either 16000 Hz (dataset I) or a variable frame 
rate (dataset II). An additional webcam was used to record the 
student’s face and upper body at 10 Hz (dataset I) or a variable 

Figure 1 User interfaces in Minecraft’s Hour of Code. Students first constructed the code using 
the interlocking blocks of code (orange) and execute the code which ran the simulation in the 

Minecraft world (green). Students were equipped with microphones and headphones and could 
see each other in the partners’ view (grey). 
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framerate (dataset II). Screen content was recorded using Zoom’s 
built-in features at 25 Hz (dataset I) or at 5 Hz with custom screen 
recording software (dataset II).  
Prior to engaging in the CPS task, students trained as a team in 
the lab (dataset I) or individually at home (dataset II) on how to 
use the Hour of Code environment. In this training, students 
completed five levels and viewed three accompanying videos that 
taught basic computer programming principles, such as loops and 
if statements. 
The team was tasked with constructing a code that satisfied five 
criteria: 1) build a four-by-four brick building, 2) use at least one 
if-statement, 3) use at least one repeat loop, 4) build at least three 
bricks of the building over water, and 5) use 15-blocks of code or 
less. One randomly chosen student controlled interaction with the 
environment using the mouse and the other two students 
contributed to the solution. The task was time-constrained to 20 
minutes for dataset I and 15 minutes for dataset II.  
After completing the task, students individually rated their 
perception of the team. In dataset I, students were asked to rate 
their team’s performance, communication, cooperation, and 
agreeableness using a six-point Likert scale (1 = very dissatisfied, 
6 = very satisfied). In dataset II, students used a six-item 
questionnaire that assessed the quality of CPS processes. The 
questionnaire was based on a validated  competency model of CPS 
[48] and assessed perception of the following CPS subfacets: 
sharing understanding of problems and solutions, establishing 
common ground, responding to others’ questions and ideas 
thoughtfully, monitoring execution, fulfilling individual roles on 
the team, and taking initiative to advance the collaboration 
process. This was followed by a three-item inclusiveness and team 
norms questionnaire that assessed how inclusive the team was 
and whether the team worked towards task-related or socially-
oriented goals [12]. Both the perceived CPS quality measures and 
the inclusiveness and team norms questionnaire were rated on a 
seven-point Likert scale (1 = disagree strongly, 7 = agree strongly).  
There were other CPS activities and assessments not germane to 
the present study and are not discussed further.  

3.4 Outcome Measures  
Each team’s final solution was scored based on the five task 
criteria. Each criterion was worth one point, with final scores 
ranging from zero to five (M = 2.88, SD = 1.16).  
In addition to objective performance (task score), we calculated a 
measure of subjective perception of the task (subjective score). For 
dataset I, we used individual self-reports of the team’s 
performance, communication, cooperation, and agreeableness. 
We averaged measures of communication, cooperation, and 
agreeableness because ratings were highly correlated (Cronbach’s 
alpha = .89). The averages were first computed per individual and, 
then, averaged across the three team members to obtain one score 
per team. Since perceptions of performance and collaboration 
were correlated (Spearman’s r = 0.51), we averaged these two 
measures to yield a single subjective measure. 
In dataset II, a subjective score was aggregated from the CPS 
quality and inclusiveness and team norms measures. We averaged 
six CPS items to yield a single score. This was also done for the 

inclusiveness and team norms measure. These two measures were 
highly correlated (Pearson’s r = .79), so we combined them by first 
z-scoring each measure and, then, by averaging the z-scores. This 
was done first per individual and, then, averaged to the team level. 

4 Identifying Unimodal Primitives and 
Multimodal Patterns  

We analyze three modalities: 1) interaction in the virtual 
environment, 2) face and upper body movements, and 3) speech 
rate. We first preprocessed and unified sampling rates of all 
signals. Since the turns between students were quite short (median 
of 1.4 seconds) [8], we resampled the signals to 1Hz. 

4.1 Behavioral Signals 
We used the screen recording to extract a high-level measure of 
activity in the virtual environment since log files were 
unavailable. We focused on two areas of interest (AOI): solution 
construction and solution execution (Figure 1). We used a 
validated motion estimation algorithm [51] to compute the 
proportion of screen change in each AOI. Change in the solution 
construction AOI indicates solution edits, whereas change in the 
solution execution AOI indicates a team’s attempt to test their 
code. We downsampled these time series to 1 Hz to ensure the 
same frequency across modalities. This was done by computing 
the mean of each AOI time series across non-overlapping 1-sec 
windows. The active AOI in each 1-sec window was identified as 
the one with the maximal proportion of pixels changed.   
We computed a frame-level measure of face and upper body 
movement using the same validated motion estimation algorithm 
used for the screen AOIs. For data set I, the 10 Hz time series was 
transformed to a 1 Hz time series by taking the mean over non-
overlapping 1-sec windows. For dataset II, face and upper body 
videos were recorded at a variable frame rate. We converted them 
to a constant frame rate of 10 frames per second using FFMPEG. 
We then converted the video to a 2 Hz time series by taking the 
mean over non-overlapping 0.5 second time windows. Finally, we 
converted the data to a 1 Hz time series by taking the mean over 
1-second windows. 
We computed speech rate as a measure of verbal participation in 
the task. We used the IBM Watson Speech to Text service [58] to 
generate transcriptions of individual audio recordings. IBM 
Watson provides start and stop times for each word spoken during 
the collaboration. For each second of the recording, we counted 
the  number of words spoken during that second to yield speech 
rate (words per second). If a word spanned multiple seconds, we 
assigned it to the second in which it started.  

4.2 Identifying Unimodal Primitives 
For each modality, we defined and extracted three basic patterns 
of activity (unimodal primitives). First, we identified three 
primitives based on activity in the virtual environment. 
Specifically, Solution construction corresponded to the activity in 
the code region, whereas Solution execution represented activity 
in the Minecraft simulation region, in which students were 
running the assembled code. If changes occurred in both areas, we 
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selected the one with the most change as the dominant AOI for 
that second. A third primitive called Idling measured students’ 
inactivity in the virtual environment. We identified idling based 
on a threshold (t = 0.001%) [1], which accounted for small changes 
not associated with the students’ actions (e.g., an icon randomly 
blinked in the Minecraft simulation).  
Next, we computed three primitives for the team’s speech activity. 
Controller speaking  reflects instances when the student who was 
controlling the Minecraft environment was speaking. Contributors 
speaking reflects when either of the other two students were 
speaking. Silence/Back channeling represents the periods of 
interaction when the controller’s and contributors’ speech rate 
was below their median. In the case of the controller, the median 
was equal to 0. In the case of the contributors, the median often 
varied between 0 and 3 words, corresponding to either silence or 
back channeling (i.e., “uh-huh”, “okay”, “right”). To account for 
individual differences, the speech rate signals were first z-score 
standardized for each student. In addition, the two contributors’ 
speech rates were averaged since it is not theoretically interesting 
to distinguish among the two. Then, we binarized the controller’s 
and contributors’ data streams based on their medians and 
identified which of three speech primitives occurred in each 1-
second segment. 
Finally, body-movement primitives were identified from the 
students’ proportions of pixel changes in the video recording of 
facial expressions and upper body movements. The data stream of 
students’ body movements was the noisiest of the three modalities 
considered. Even though a student might appear to be calm and 
focused, they could still exhibit small movements and gestures, 
such as scratching their chin with a pencil or fidgeting on the 
chair. Thus, we opted for two simple primitives at the team level. 
Some movement represented the moments when anybody in the 

team exhibited movement above their median, whereas low 
movement reflected the collective lack of body movement. As with 
speech rate, the body movement data streams were first z-score 
standardized for each student in the team separately, and 
averaged contributors’ data streams after that. Next, two data 
streams (controller’s and contributors’) were binarized based on 
their median and then each second was classified as Low 
movement (all <= median) or Some movement (either controller’s 
or contributors’ values > median).  

4.3 Combining Primitives into Multimodal 
Patterns 
We hypothesized that combining modalities would provide added 
insights on the team’s collaborative outcomes. Thus, we combined 
the unimodal primitives to generate multimodal patterns, as 
illustrated in Figure 2. First, we combined the interaction 
primitives with speech to yield nine bimodal patterns (3 for 
interaction × 3 speech). Then, we combined these with the body-
movement primitives to yield 18 multimodal patterns (3 for 
interaction × 3 speech × 2 body movement). It should be noted 
that we consider bodily movements a secondary channel, 
compared to speech and interaction, because the task is dependent 
on speech and interaction. Therefore, we proceeded in the manner 
described to ascertain if there were any added benefits of 
including secondary signals to more basic ones. 

4.4 Aggregation & Standardization by Dataset 
and School 
We separately calculated the proportion of bimodal and 
multimodal patterns within each team by averaging across the 1-
sec segments. In total, the pool of patterns comprised proportions 
of seven unimodal primitives, nine bimodal, and 18 multimodal 

Figure 2 Overview of unimodal primitives and their bimodal and multimodal patterns.  
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patterns. We z-score standardized the proportional occurrences of 
each primitive/pattern separately within dataset I and II. In 
dataset II, the primitives/patterns were also standardized based on 
the school to account for differences between two schools. We 
similarly z-score standardized two outcome variables (task score 
and the subjective perceptions score). 

5 RESULTS 
We present the results with respect to our three research 
questions.  

5.1 RQ1. Behavioral Patterns Emerging during 
Remote CPS 
We found that inactivity in the user interface and speech 
represented the major unimodal primitives. On average, idling 
occurred 48.37% of the time (SD = 12.1) and silence/back 
channeling occurred 39.06% of the time (SD = 8.2). With respect to 
activity in the user interface, solution construction was the second 
most frequent (M = 32.67%, SD = 8.7%) followed by the solution 
execution (M = 18.96%, SD = 6.3). With respect to team’s speech, 
contributors speaking (M = 29.77%, SD = 6.8) was more frequent 
than the controller speaking (M = 18.85%, SD = 7.4), which may 
indicate that the controller was often following the suggestions of 

the contributors. These data are shown in Figure 3. Since 
proportion of teams’ body movements were equal because of the 
median split, they were omitted from the figure.   
The bimodal and multimodal patterns provide a more detailed 
picture (Figure 4). For example, solution construction while 
silence/back channeling and without movement occurred more 
frequently (M = 10.45%, SD = 3.2) than the equivalent combination 
with the contributors (M = 6.03%, SD = 2.5) or the controller 
speaking (M = 3.96%, SD = 2.3). While it would be interesting to 
explore particular multimodal patterns in an of themselves, we 
mainly focus on the ones associated with the team’s performance, 
which we analyzed next.  

5.2 RQ2. Correlations with Team-level 
Outcomes 
We first correlated the unimodal  patterns with the objective task 
score and subjective score using Spearman correlation to address 
nonnormal distributions. We did not apply a correction for 
multiple significance tests due to the exploratory nature of this 
research and because false positives can be easily detected. For 
example, a significant correlation with a bimodal pattern where 
the corresponding unimodal or multimodal correlations were 
non-significant is likely a false positive. Tables 1 and 2 illustrate 

Figure 3 and 4 Distribution of unimodal primitives (left) and multimodal patterns (right). Proportions have 
been sorted in the descending order according to pattern’s average.  
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correlations between performance and the interaction primitives 
(the speech primitives were uncorrelated with performance and 
are not shown) along with corresponding bimodal 
(speech+interaction) and multimodal patterns. 
We found that task score was positively correlated with solution 
execution (r = 0.334, p < 0.001), suggesting that teams’ efforts to 
try various solutions was positively related to their performance. 
When examining this primitive further, the bimodal and 
multimodal patterns revealed that solution execution during 
silence/back channeling (r = 0.329, p < 0.001) and with less 
movement (r = 0.340, p < 0.001) was similarly correlated with the 
task score. However, inclusion of some other primitives reduced 
the correlation (e.g., solution execution in silence/back 
channeling, but with some movement; r = 0.203, p = 0.029) and 
some others eliminated it altogether (e.g., solution execution 
when contributors speaking with some movement; r = 0.106, p = 
0.260). The results suggest that even small changes in the context, 

such as contributors speaking or somebody moving, lowered the 
correlation of the pattern with the task score.   
Results also suggest that inactivity was generally negatively 
associated with task score. Specifically, idling, as a unimodal 
primitive, was negatively correlated with the task score (r = -0.204, 
p = 0.028) as was idling in silence/back channeling (r = -0.208, p = 
0.025). More importantly, the negative correlation was notably 
stronger when a lack of movement was added to the mix (r = -
0.351, p < 0.001 for idling + silence/back channeling + low 
movement).  
A similar picture unfolded with respect to the subjective score. 
The primitive pattern of solution execution was positively 
correlated with the subjective score (r = 0.205, p = 0.027). This 
correlation was strengthened when the contributors were 
speaking (r = 0.273, p = 0.003) and the team remained still (r = 
0.299, p = 0.001). Similar to above, both idling (r = -0.092, p = 0.326) 
and idling in silence/back channeling (r = -0.130, p = 0.165) were 

Unimodal 
Primitives

Task 
score

Bimodal Patterns Task 
score

Multimodal Patterns Task 
score

Idling + Silence/Back channeling + Low Movement -0.35***
Idling + Silence/Back channeling + Some Movement -0.06
Idling + Controller Speaking + Low Movement -0.15
Idling + Controller Speaking + Some Movement -0.04
Idling + Contributors Speaking + Low Movement -0.11
Idling + Contributors Speaking + Some Movement -0.1
Construction + Silence/Back channeling + Low Movement -0.03
Construction + Silence/Back channeling + Some Movement -0.13
Construction + Controller Speaking + Low Movement 0.01
Construction + Controller Speaking + Some Movement 0.01
Construction + Contributors Speaking + Low Movement 0.07
Construction + Contributors Speaking + Some Movement -0.05
Execution + Silence/Back channeling + Low Movement 0.34***
Execution + Silence/Back channeling + Some Movement 0.20*
Execution + Controller Speaking + Low Movement 0.16
Execution + Controller Speaking + Some Movement 0.15
Execution + Contributors Speaking + Low Movement 0.21*
Execution + Contributors Speaking + Some Movement 0.11

Unimodal 
Primitives

Subjective 
score

Bimodal Patterns Subjective 
score

Multimodal Patterns Subjective 
score

Idling + Silence/Back channeling + Low Movement -0.25**
Idling + Silence/Back channeling + Some Movement -0.04
Idling + Controller Speaking + Low Movement -0.06
Idling + Controller Speaking + Some Movement 0.02
Idling + Contributors Speaking + Low Movement -0.03
Idling + Contributors Speaking + Some Movement 0.05
Construction + Silence/Back channeling + Low Movement 0
Construction + Silence/Back channeling + Some Movement -0.15
Construction + Controller Speaking + Low Movement -0.04
Construction + Controller Speaking + Some Movement -0.04
Construction + Contributors Speaking + Low Movement 0.13
Construction + Contributors Speaking + Some Movement -0.01
Execution + Silence/Back channeling + Low Movement 0.12
Execution + Silence/Back channeling + Some Movement 0.08
Execution + Controller Speaking + Low Movement 0.02
Execution + Controller Speaking + Some Movement 0.11
Execution + Contributors Speaking + Low Movement 0.30**
Execution + Contributors Speaking + Some Movement 0.18

Idling -0.20*

Idling + Silence/Back channeling -0.21*

Idling + Controller Speaking -0.09

Idling + Contributors Speaking -0.11

Construction 0.01

Construction + Silence/Back channeling -0.07

Construction + Controller Speaking 0

Construction + Contributors Speaking 0.02

Execution 0.33***

Execution + Silence/Back channeling 0.33***

Execution + Controller Speaking 0.17

Execution + Contributors Speaking 0.18

Idling -0.09

Idling + Silence/Back channeling -0.13

Idling + Controller Speaking -0.01

Idling + Contributors Speaking 0.01

Construction -0.04

Construction + Silence/Back channeling -0.05

Construction + Controller Speaking -0.06

Construction + Contributors Speaking 0.05

Execution 0.20*

Execution + Silence/Back channeling 0.12

Execution + Controller Speaking 0.07

Execution + Contributors Speaking 0.27**

Table 1 and 2 Spearman's correlation of unimodal primitives, bimodal and multimodal patterns with 
team's task score (top) and subjective score (bottom). The asterisks indicate significance at the level of 

0.05, 0.01 and 0.001 respectively. 

 

icce




LAK’20, March, 2020, Frankfurt, Germany H. Vrzakova et al. 
 

 

 

negatively correlated with the subjective score (r = -0.254, p = 
0.006).  
There was also a notable lack of correlations. Specifically, none of 
the speech primitives correlated with team performance nor was 
solution construction and its associated bimodal and multimodal 
patterns. The action appears to lie in execution and idling. 

5.3 RQ3. Contribution of Multimodal Patterns 
over Unimodal Primitives 
We assessed whether the bimodal and multimodal patterns were  
more strongly correlated with the outcomes compared to the 
unimodal primitives. In case of the task score, the best correlation 
of 0.340 (p < 0.001) obtained with the Execution + Silence/Back 
channeling + Low movement multimodal pattern was similar to 
the correlation of 0.334 (p < 0.001) obtained via the unimodal 
primitive Execution. Zou’s test of the difference between two 
overlapping dependent correlations [57] with one common 
variable (i.e. Execution) indicated that two correlation coefficients 
were statistically equivalent at p < 0.05 (CI [-0.10, 0.12]; i.e., the 
confidence interval overlaps with 0). Similarly for the subjective 
score, the best correlation of 0.205 (p = 0.027) obtained via the 
unimodal primitive Execution was statistically equivalent to the 
0.299 correlation (p = 0.001) obtained from Execution + 
Contributors speaking + Low movement (CI [-0.08, 0.27]). The 
same trend was observed between unimodal and bimodal 
patterns. Thus, with respect to the solution execution, there was 
no added advantage of the bimodal or multimodal patterns over 
the unimodal primitives.  
However, the patterns related to idling suggested a different 
conclusion. With respect to task score, the strongest negative 
correlation of -0.351 obtained with the multimodal pattern (Idling 
+ Silence/Back channeling + Low movement) was statistically 
larger than the correlation of -0.204 (p = 0.028) from the unimodal 
primitive (Idling) ([-0.29, -0.00045]; CI does not overlap 0). This 
result was also found  for the correlations with the subjective 
score. Specifically, the strongest negative correlation of  -0.254 (p 
= 0.006), obtained with the same multimodal pattern, was 
statistically different ([-0.31, -0.01]) from the -0.092 (p = 0.326) 
correlation obtained with Idling alone. This finding suggests that 
not all idling is negatively associated with CPS. Idling while 
speaking and moving was not significantly related to the 
outcomes, but idling in silence or back channeling with little 
movement negatively predicted both objective and subjective 
outcomes. 

6 Discussion 
Multimodal learning analytics is gaining prominence in the field 
of collaborative learning. Researchers have typically explored 
data-driven approaches and multimodal modeling in an attempt 
to understand the rich and complex processes involved in 
collaboration. Despite the technical advances in machine learning, 
multimodal modeling often suffers from problems with model 
interpretability. In this work, we aimed to unveil complex, but 
interpretable, interaction and behavioral patterns that emerge 
during remote collaborative problem solving among triads. 

6.1 Main Findings and Implications 
We started with interaction patterns that emerged during CPS and 
gradually included primitives from speech and body movement 
with the goal of  exploring how these patterns are associated with 
teams’ subjective and objective performance. We found that 
certain patterns including code execution were positively 
correlated with teams’ task and subjective score. Interestingly, the 
highest correlations were observed when the code execution 
occurred during periods of silence (or back channeling) and with 
little body movement, perhaps suggesting focused concentration. 
In contrast, idling with little speech and movement was negatively 
associated with both outcomes. This pattern might indicate that 
the team was stuck or experiencing a tense moment.  
Surprisingly, the more infrequent unimodal primitive (code 
execution) was the one that was most strongly correlated with 
performance. Code execution was also correlated with task score 
when it was accompanied with silence or back channeling and 
little body movement. But even small changes in the context, such 
as teammates speaking or moving, weakened this association or 
eliminated it altogether. One possibility is that team’s silence and 
stillness could indicate team’s anticipation of a successful 
execution or their focused attention on the code itself as it was 
being executed. Additional “behavioral disturbances”, such as 
teammates commenting on the code or fidgeting in their chairs, 
probably reduced teams’ focus. Conversely, in the case of idling 
in the virtual environment, the negative correlation was stronger 
when idling was observed in the context of silence/back 
channeling and with less body movement and disappeared in the 
presence of speech.  
 These results lead us to question: are the multimodal patterns 
better than the unimodal primitives? As illustrated above, we 
found evidence for both sides of the argument. In the case of code 
execution, the answer is no, but it is a yes in the case of idling. 
However, it is important to go beyond the significant correlations 
as there is an informative signal in the non-significant ones as 
well. For example, consider idling once again. By itself, this 
pattern is negatively correlated with the task score (r  = -.21) and 
the correlation is even more negative when idling is accompanied 
by silence/back channeling and little movement (r = -.35). 
However, there are many other configurations where idling is 
weak or negligible predictor of task score. For example, idling 
occurring in the context of the contributors speaking with some 
movement is more weakly correlated with task score (r = -.11) and 
the correlation is essentially null when idling is accompanied with 
the controller speaking and some movement (r = -.06). Thus, even 
when they do not improve predictive power, multimodal patterns 
help contextualize and reveal nuances in the unimodal primitives. 
This supports the overall idea of multimodal learning analytics in 
which the additional modalities (speech and body movement in 
our case) help to understand unclear patterns such as idling.  
This finding is interesting from two perspectives. From the 
perspective of deeper understanding of collaborations , the 
multimodal patterns might be a preferable approach since they 
allow to identify contextual nuances in the collaborative process 
and, thus, increase interpretability. However, from the 
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perspective of real-time interventions, the unimodal primitives 
represent a valuable source of information in and of themselves. 
In the design of learning interventions, one needs to compromise 
interpretability in favor of other factors, such as computational 
demands and intervention latency. As we further anticipate the 
advances in the field of multimodal modeling and pattern 
recognition, future research will need to investigate the trade-offs 
between the patterns’ interpretability and usability for real-time 
use.  

6.2 Limitations and Future Work 
Like all studies, ours have limitations. First, we purposefully 
selected modalities that are already available at current PC setups 
(speech via a microphone, body movements via a webcam, 
interaction via a screen recording) and simplified their data 
streams into binary or ternary unimodal primitives. Although this 
approach greatly helps with interpretability, this comes at the cost 
of losing fine-grained detail. We also did not consider other 
modalities that might aid in interpretation (e.g., facial 
expressions). 
Second, with respect to analyses, we opted for simpler approaches 
such as counting patterns that occurred simultaneously. However, 
additional approaches such as multi-dimensional recurrence 
quantification analyses [50] can be used to investigate the 
temporal dynamics of these patterns [1,8,49]. On that note, we 
also used zero-order Spearman correlations to study associations 
of the patterns with CPS outcomes. Although these analyses 
allowed us to highlight differences between patterns, they do not 
control for additional factors that could influence team 
performance. Future research should include factors such as the 
team’s demographic composition, personality differences, prior 
knowledge effects, and task-related aspects (i.e., establishing 
common grounds, setting goals, or getting familiar with 
teammates) in order to study the incremental predictive validity 
of the patterns over these more stable factors. 
Future work should also explore the patterns in relation to the 
theory of process loss. Although we did not directly test for 
specific effects, we hypothesized that process loss is an inevitable 
part of collaboration and would be reflected in some patterns. For 
example, a silent teammate could signal a lack of engagement and 
presumably signal a free rider effect. Similarly, increased speech 
could indicate a dominant teammate potentially blocking others. 
Further analyses could examine whether unimodal and 
multimodal patterns reflect these effects. 
Finally, we explored the interaction and behavioral patterns in one 
task in a lab study. However, further research could examine 
generalizability of the constructs to other CPS tasks with data 
collected in more authentic environments.  

6.3 Concluding Remarks 
Remote collaborative problem solving is composed of rich 
multimodal dynamic processes and interactions between 
teammates that characterize team performance. Our work 
provides in-detailed insights on interaction patterns and 

behaviors observed in the large-scaled datasets and has 
implications for the design of real-time interventions.  
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